wahidww's picture
Model save
a24b42c verified
|
raw
history blame
2.8 kB
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8653366583541147

swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3944
  • Accuracy: 0.8653

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3648 0.99 59 0.3998 0.8653
0.3789 2.0 119 0.4005 0.8653
0.3572 2.99 178 0.4006 0.8653
0.3842 4.0 238 0.3905 0.8653
0.356 4.99 297 0.3894 0.8653
0.3564 6.0 357 0.3936 0.8653
0.3668 6.99 416 0.3934 0.8653
0.3538 8.0 476 0.3882 0.8653
0.353 8.99 535 0.3870 0.8653
0.3481 10.0 595 0.3867 0.8653
0.3315 10.99 654 0.3949 0.8653
0.3456 12.0 714 0.3919 0.8678
0.3329 12.99 773 0.3905 0.8653
0.3409 14.0 833 0.3930 0.8653
0.313 14.87 885 0.3944 0.8653

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0