metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8653366583541147
swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3944
- Accuracy: 0.8653
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3648 | 0.99 | 59 | 0.3998 | 0.8653 |
0.3789 | 2.0 | 119 | 0.4005 | 0.8653 |
0.3572 | 2.99 | 178 | 0.4006 | 0.8653 |
0.3842 | 4.0 | 238 | 0.3905 | 0.8653 |
0.356 | 4.99 | 297 | 0.3894 | 0.8653 |
0.3564 | 6.0 | 357 | 0.3936 | 0.8653 |
0.3668 | 6.99 | 416 | 0.3934 | 0.8653 |
0.3538 | 8.0 | 476 | 0.3882 | 0.8653 |
0.353 | 8.99 | 535 | 0.3870 | 0.8653 |
0.3481 | 10.0 | 595 | 0.3867 | 0.8653 |
0.3315 | 10.99 | 654 | 0.3949 | 0.8653 |
0.3456 | 12.0 | 714 | 0.3919 | 0.8678 |
0.3329 | 12.99 | 773 | 0.3905 | 0.8653 |
0.3409 | 14.0 | 833 | 0.3930 | 0.8653 |
0.313 | 14.87 | 885 | 0.3944 | 0.8653 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0