wahidww commited on
Commit
0d55b17
1 Parent(s): 776821a

Model save

Browse files
Files changed (1) hide show
  1. README.md +17 -34
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.8709677419354839
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.3968
37
- - Accuracy: 0.8710
38
 
39
  ## Model description
40
 
@@ -53,7 +53,7 @@ More information needed
53
  ### Training hyperparameters
54
 
55
  The following hyperparameters were used during training:
56
- - learning_rate: 5e-05
57
  - train_batch_size: 64
58
  - eval_batch_size: 64
59
  - seed: 42
@@ -62,39 +62,22 @@ The following hyperparameters were used during training:
62
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
  - lr_scheduler_type: linear
64
  - lr_scheduler_warmup_ratio: 0.1
65
- - num_epochs: 30
66
 
67
  ### Training results
68
 
69
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
- |:-------------:|:-------:|:----:|:---------------:|:--------:|
71
- | No log | 0.8889 | 2 | 1.7756 | 0.2258 |
72
- | No log | 1.7778 | 4 | 1.6784 | 0.2581 |
73
- | No log | 2.6667 | 6 | 1.5861 | 0.3226 |
74
- | No log | 4.0 | 9 | 1.3571 | 0.4194 |
75
- | No log | 4.8889 | 11 | 1.0993 | 0.5484 |
76
- | No log | 5.7778 | 13 | 0.9242 | 0.6452 |
77
- | 1.4667 | 6.6667 | 15 | 0.7538 | 0.7097 |
78
- | 1.4667 | 8.0 | 18 | 0.6294 | 0.7742 |
79
- | 1.4667 | 8.8889 | 20 | 0.5326 | 0.7097 |
80
- | 1.4667 | 9.7778 | 22 | 0.4848 | 0.7419 |
81
- | 1.4667 | 10.6667 | 24 | 0.4832 | 0.7742 |
82
- | 1.4667 | 12.0 | 27 | 0.4483 | 0.7742 |
83
- | 1.4667 | 12.8889 | 29 | 0.4296 | 0.7742 |
84
- | 0.5925 | 13.7778 | 31 | 0.4023 | 0.7742 |
85
- | 0.5925 | 14.6667 | 33 | 0.4111 | 0.8387 |
86
- | 0.5925 | 16.0 | 36 | 0.3873 | 0.8065 |
87
- | 0.5925 | 16.8889 | 38 | 0.4029 | 0.8065 |
88
- | 0.5925 | 17.7778 | 40 | 0.4065 | 0.8065 |
89
- | 0.5925 | 18.6667 | 42 | 0.3864 | 0.8065 |
90
- | 0.3285 | 20.0 | 45 | 0.3968 | 0.8710 |
91
- | 0.3285 | 20.8889 | 47 | 0.3930 | 0.8710 |
92
- | 0.3285 | 21.7778 | 49 | 0.3871 | 0.8710 |
93
- | 0.3285 | 22.6667 | 51 | 0.3779 | 0.8065 |
94
- | 0.3285 | 24.0 | 54 | 0.3698 | 0.8065 |
95
- | 0.3285 | 24.8889 | 56 | 0.3726 | 0.8387 |
96
- | 0.3285 | 25.7778 | 58 | 0.3732 | 0.8387 |
97
- | 0.2621 | 26.6667 | 60 | 0.3732 | 0.8387 |
98
 
99
 
100
  ### Framework versions
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 0.8257839721254355
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.4614
37
+ - Accuracy: 0.8258
38
 
39
  ## Model description
40
 
 
53
  ### Training hyperparameters
54
 
55
  The following hyperparameters were used during training:
56
+ - learning_rate: 1e-05
57
  - train_batch_size: 64
58
  - eval_batch_size: 64
59
  - seed: 42
 
62
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
  - lr_scheduler_type: linear
64
  - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 10
66
 
67
  ### Training results
68
 
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
+ | 1.8826 | 1.0 | 64 | 1.5673 | 0.4669 |
72
+ | 1.1123 | 2.0 | 128 | 0.9031 | 0.7154 |
73
+ | 0.8883 | 3.0 | 192 | 0.7255 | 0.7573 |
74
+ | 0.7778 | 4.0 | 256 | 0.6219 | 0.7793 |
75
+ | 0.708 | 5.0 | 320 | 0.5521 | 0.8002 |
76
+ | 0.6308 | 6.0 | 384 | 0.5193 | 0.8130 |
77
+ | 0.6142 | 7.0 | 448 | 0.4854 | 0.8235 |
78
+ | 0.5817 | 8.0 | 512 | 0.4726 | 0.8200 |
79
+ | 0.5952 | 9.0 | 576 | 0.4648 | 0.8211 |
80
+ | 0.5915 | 10.0 | 640 | 0.4614 | 0.8258 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
 
82
 
83
  ### Framework versions