Model save
Browse files
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
|
34 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
-
- Loss: 0.
|
37 |
-
- Accuracy: 0.
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -53,7 +53,7 @@ More information needed
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
-
- learning_rate:
|
57 |
- train_batch_size: 64
|
58 |
- eval_batch_size: 64
|
59 |
- seed: 42
|
@@ -62,39 +62,22 @@ The following hyperparameters were used during training:
|
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
- lr_scheduler_warmup_ratio: 0.1
|
65 |
-
- num_epochs:
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
-
| Training Loss | Epoch
|
70 |
-
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
| 1.4667 | 10.6667 | 24 | 0.4832 | 0.7742 |
|
82 |
-
| 1.4667 | 12.0 | 27 | 0.4483 | 0.7742 |
|
83 |
-
| 1.4667 | 12.8889 | 29 | 0.4296 | 0.7742 |
|
84 |
-
| 0.5925 | 13.7778 | 31 | 0.4023 | 0.7742 |
|
85 |
-
| 0.5925 | 14.6667 | 33 | 0.4111 | 0.8387 |
|
86 |
-
| 0.5925 | 16.0 | 36 | 0.3873 | 0.8065 |
|
87 |
-
| 0.5925 | 16.8889 | 38 | 0.4029 | 0.8065 |
|
88 |
-
| 0.5925 | 17.7778 | 40 | 0.4065 | 0.8065 |
|
89 |
-
| 0.5925 | 18.6667 | 42 | 0.3864 | 0.8065 |
|
90 |
-
| 0.3285 | 20.0 | 45 | 0.3968 | 0.8710 |
|
91 |
-
| 0.3285 | 20.8889 | 47 | 0.3930 | 0.8710 |
|
92 |
-
| 0.3285 | 21.7778 | 49 | 0.3871 | 0.8710 |
|
93 |
-
| 0.3285 | 22.6667 | 51 | 0.3779 | 0.8065 |
|
94 |
-
| 0.3285 | 24.0 | 54 | 0.3698 | 0.8065 |
|
95 |
-
| 0.3285 | 24.8889 | 56 | 0.3726 | 0.8387 |
|
96 |
-
| 0.3285 | 25.7778 | 58 | 0.3732 | 0.8387 |
|
97 |
-
| 0.2621 | 26.6667 | 60 | 0.3732 | 0.8387 |
|
98 |
|
99 |
|
100 |
### Framework versions
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.8257839721254355
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.4614
|
37 |
+
- Accuracy: 0.8258
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 1e-05
|
57 |
- train_batch_size: 64
|
58 |
- eval_batch_size: 64
|
59 |
- seed: 42
|
|
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: linear
|
64 |
- lr_scheduler_warmup_ratio: 0.1
|
65 |
+
- num_epochs: 10
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
71 |
+
| 1.8826 | 1.0 | 64 | 1.5673 | 0.4669 |
|
72 |
+
| 1.1123 | 2.0 | 128 | 0.9031 | 0.7154 |
|
73 |
+
| 0.8883 | 3.0 | 192 | 0.7255 | 0.7573 |
|
74 |
+
| 0.7778 | 4.0 | 256 | 0.6219 | 0.7793 |
|
75 |
+
| 0.708 | 5.0 | 320 | 0.5521 | 0.8002 |
|
76 |
+
| 0.6308 | 6.0 | 384 | 0.5193 | 0.8130 |
|
77 |
+
| 0.6142 | 7.0 | 448 | 0.4854 | 0.8235 |
|
78 |
+
| 0.5817 | 8.0 | 512 | 0.4726 | 0.8200 |
|
79 |
+
| 0.5952 | 9.0 | 576 | 0.4648 | 0.8211 |
|
80 |
+
| 0.5915 | 10.0 | 640 | 0.4614 | 0.8258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
### Framework versions
|