--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7490636704119851 --- # swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7276 - Accuracy: 0.7491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.2929 | 0.9811 | 39 | 1.0328 | 0.6404 | | 0.9974 | 1.9874 | 79 | 0.7795 | 0.7416 | | 0.9114 | 2.9434 | 117 | 0.7276 | 0.7491 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3