--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8653366583541147 --- # swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3944 - Accuracy: 0.8653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3648 | 0.99 | 59 | 0.3998 | 0.8653 | | 0.3789 | 2.0 | 119 | 0.4005 | 0.8653 | | 0.3572 | 2.99 | 178 | 0.4006 | 0.8653 | | 0.3842 | 4.0 | 238 | 0.3905 | 0.8653 | | 0.356 | 4.99 | 297 | 0.3894 | 0.8653 | | 0.3564 | 6.0 | 357 | 0.3936 | 0.8653 | | 0.3668 | 6.99 | 416 | 0.3934 | 0.8653 | | 0.3538 | 8.0 | 476 | 0.3882 | 0.8653 | | 0.353 | 8.99 | 535 | 0.3870 | 0.8653 | | 0.3481 | 10.0 | 595 | 0.3867 | 0.8653 | | 0.3315 | 10.99 | 654 | 0.3949 | 0.8653 | | 0.3456 | 12.0 | 714 | 0.3919 | 0.8678 | | 0.3329 | 12.99 | 773 | 0.3905 | 0.8653 | | 0.3409 | 14.0 | 833 | 0.3930 | 0.8653 | | 0.313 | 14.87 | 885 | 0.3944 | 0.8653 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0