--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2 results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- # swin-tiny-patch4-window7-224-finetuned-mobile-eye-tracking-dataset-v2 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0019 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8881 | 0.99 | 46 | 0.4645 | 0.8283 | | 0.257 | 1.99 | 92 | 0.0719 | 0.9823 | | 0.1419 | 2.98 | 138 | 0.0462 | 0.9823 | | 0.0888 | 4.0 | 185 | 0.0056 | 0.9984 | | 0.0706 | 4.99 | 231 | 0.0189 | 0.9936 | | 0.057 | 5.99 | 277 | 0.0068 | 0.9968 | | 0.0592 | 6.98 | 323 | 0.0045 | 0.9984 | | 0.0475 | 8.0 | 370 | 0.0019 | 1.0 | | 0.0472 | 8.99 | 416 | 0.0025 | 1.0 | | 0.0404 | 9.99 | 462 | 0.0003 | 1.0 | | 0.0392 | 10.98 | 508 | 0.0003 | 1.0 | | 0.0337 | 12.0 | 555 | 0.0007 | 1.0 | | 0.0279 | 12.99 | 601 | 0.0003 | 1.0 | | 0.0273 | 13.99 | 647 | 0.0003 | 1.0 | | 0.0236 | 14.92 | 690 | 0.0002 | 1.0 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1