Update pipeline.py
Browse files- pipeline.py +6 -6
pipeline.py
CHANGED
@@ -472,7 +472,7 @@ class StableDiffusionLongPromptPipeline(DiffusionPipeline):
|
|
472 |
eta: float = 0.0,
|
473 |
generator: Optional[torch.Generator] = None,
|
474 |
latents: Optional[torch.FloatTensor] = None,
|
475 |
-
max_embeddings_multiples: Optional[int] =
|
476 |
output_type: Optional[str] = "pil",
|
477 |
return_dict: bool = True,
|
478 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
@@ -513,7 +513,7 @@ class StableDiffusionLongPromptPipeline(DiffusionPipeline):
|
|
513 |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
514 |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
515 |
tensor will ge generated by sampling using the supplied random `generator`.
|
516 |
-
max_embeddings_multiples (`int`, *optional*, defaults to `
|
517 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
518 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
519 |
The output format of the generate image. Choose between
|
@@ -684,7 +684,7 @@ class StableDiffusionLongPromptPipeline(DiffusionPipeline):
|
|
684 |
num_images_per_prompt: Optional[int] = 1,
|
685 |
eta: Optional[float] = 0.0,
|
686 |
generator: Optional[torch.Generator] = None,
|
687 |
-
max_embeddings_multiples: Optional[int] =
|
688 |
output_type: Optional[str] = "pil",
|
689 |
return_dict: bool = True,
|
690 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
@@ -726,7 +726,7 @@ class StableDiffusionLongPromptPipeline(DiffusionPipeline):
|
|
726 |
generator (`torch.Generator`, *optional*):
|
727 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
728 |
deterministic.
|
729 |
-
max_embeddings_multiples (`int`, *optional*, defaults to `
|
730 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
731 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
732 |
The output format of the generate image. Choose between
|
@@ -914,7 +914,7 @@ class StableDiffusionLongPromptPipeline(DiffusionPipeline):
|
|
914 |
num_images_per_prompt: Optional[int] = 1,
|
915 |
eta: Optional[float] = 0.0,
|
916 |
generator: Optional[torch.Generator] = None,
|
917 |
-
max_embeddings_multiples: Optional[int] =
|
918 |
output_type: Optional[str] = "pil",
|
919 |
return_dict: bool = True,
|
920 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
@@ -960,7 +960,7 @@ class StableDiffusionLongPromptPipeline(DiffusionPipeline):
|
|
960 |
generator (`torch.Generator`, *optional*):
|
961 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
962 |
deterministic.
|
963 |
-
max_embeddings_multiples (`int`, *optional*, defaults to `
|
964 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
965 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
966 |
The output format of the generate image. Choose between
|
|
|
472 |
eta: float = 0.0,
|
473 |
generator: Optional[torch.Generator] = None,
|
474 |
latents: Optional[torch.FloatTensor] = None,
|
475 |
+
max_embeddings_multiples: Optional[int] = 3,
|
476 |
output_type: Optional[str] = "pil",
|
477 |
return_dict: bool = True,
|
478 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
|
513 |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
514 |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
515 |
tensor will ge generated by sampling using the supplied random `generator`.
|
516 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
517 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
518 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
519 |
The output format of the generate image. Choose between
|
|
|
684 |
num_images_per_prompt: Optional[int] = 1,
|
685 |
eta: Optional[float] = 0.0,
|
686 |
generator: Optional[torch.Generator] = None,
|
687 |
+
max_embeddings_multiples: Optional[int] = 3,
|
688 |
output_type: Optional[str] = "pil",
|
689 |
return_dict: bool = True,
|
690 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
|
726 |
generator (`torch.Generator`, *optional*):
|
727 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
728 |
deterministic.
|
729 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
730 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
731 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
732 |
The output format of the generate image. Choose between
|
|
|
914 |
num_images_per_prompt: Optional[int] = 1,
|
915 |
eta: Optional[float] = 0.0,
|
916 |
generator: Optional[torch.Generator] = None,
|
917 |
+
max_embeddings_multiples: Optional[int] = 3,
|
918 |
output_type: Optional[str] = "pil",
|
919 |
return_dict: bool = True,
|
920 |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
|
960 |
generator (`torch.Generator`, *optional*):
|
961 |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
962 |
deterministic.
|
963 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
964 |
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
965 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
966 |
The output format of the generate image. Choose between
|