|
import numpy as np |
|
import os, sys |
|
import copy |
|
from lib.utils.tools import read_pkl |
|
from lib.utils.utils_data import split_clips |
|
|
|
class DataReaderMesh(object): |
|
def __init__(self, n_frames, sample_stride, data_stride_train, data_stride_test, read_confidence=True, dt_root = 'data/mesh', dt_file = 'pw3d_det.pkl', res=[1920, 1920]): |
|
self.split_id_train = None |
|
self.split_id_test = None |
|
self.dt_dataset = read_pkl('%s/%s' % (dt_root, dt_file)) |
|
self.n_frames = n_frames |
|
self.sample_stride = sample_stride |
|
self.data_stride_train = data_stride_train |
|
self.data_stride_test = data_stride_test |
|
self.read_confidence = read_confidence |
|
self.res = res |
|
|
|
def read_2d(self): |
|
if self.res is not None: |
|
res_w, res_h = self.res |
|
offset = [1, res_h / res_w] |
|
else: |
|
res = np.array(self.dt_dataset['train']['img_hw'])[::self.sample_stride].astype(np.float32) |
|
res_w, res_h = res.max(1)[:, None, None], res.max(1)[:, None, None] |
|
offset = 1 |
|
trainset = self.dt_dataset['train']['joint_2d'][::self.sample_stride, :, :2].astype(np.float32) |
|
testset = self.dt_dataset['test']['joint_2d'][::self.sample_stride, :, :2].astype(np.float32) |
|
|
|
trainset = trainset / res_w * 2 - offset |
|
testset = testset / res_w * 2 - offset |
|
if self.read_confidence: |
|
train_confidence = self.dt_dataset['train']['confidence'][::self.sample_stride].astype(np.float32) |
|
test_confidence = self.dt_dataset['test']['confidence'][::self.sample_stride].astype(np.float32) |
|
if len(train_confidence.shape)==2: |
|
train_confidence = train_confidence[:,:,None] |
|
test_confidence = test_confidence[:,:,None] |
|
trainset = np.concatenate((trainset, train_confidence), axis=2) |
|
testset = np.concatenate((testset, test_confidence), axis=2) |
|
return trainset, testset |
|
|
|
def get_split_id(self): |
|
if self.split_id_train is not None and self.split_id_test is not None: |
|
return self.split_id_train, self.split_id_test |
|
vid_list_train = self.dt_dataset['train']['source'][::self.sample_stride] |
|
vid_list_test = self.dt_dataset['test']['source'][::self.sample_stride] |
|
self.split_id_train = split_clips(vid_list_train, self.n_frames, self.data_stride_train) |
|
self.split_id_test = split_clips(vid_list_test, self.n_frames, self.data_stride_test) |
|
return self.split_id_train, self.split_id_test |
|
|
|
def get_sliced_data(self): |
|
train_data, test_data = self.read_2d() |
|
train_labels, test_labels = self.read_3d() |
|
split_id_train, split_id_test = self.get_split_id() |
|
train_data, test_data = train_data[split_id_train], test_data[split_id_test] |
|
train_labels, test_labels = train_labels[split_id_train], test_labels[split_id_test] |
|
return train_data, test_data, train_labels, test_labels |
|
|
|
|