MotionBERT / lib /data /datareader_mesh.py
walterzhu's picture
Upload 58 files
bbde80b
raw
history blame
3.23 kB
import numpy as np
import os, sys
import copy
from lib.utils.tools import read_pkl
from lib.utils.utils_data import split_clips
class DataReaderMesh(object):
def __init__(self, n_frames, sample_stride, data_stride_train, data_stride_test, read_confidence=True, dt_root = 'data/mesh', dt_file = 'pw3d_det.pkl', res=[1920, 1920]):
self.split_id_train = None
self.split_id_test = None
self.dt_dataset = read_pkl('%s/%s' % (dt_root, dt_file))
self.n_frames = n_frames
self.sample_stride = sample_stride
self.data_stride_train = data_stride_train
self.data_stride_test = data_stride_test
self.read_confidence = read_confidence
self.res = res
def read_2d(self):
if self.res is not None:
res_w, res_h = self.res
offset = [1, res_h / res_w]
else:
res = np.array(self.dt_dataset['train']['img_hw'])[::self.sample_stride].astype(np.float32)
res_w, res_h = res.max(1)[:, None, None], res.max(1)[:, None, None]
offset = 1
trainset = self.dt_dataset['train']['joint_2d'][::self.sample_stride, :, :2].astype(np.float32) # [N, 17, 2]
testset = self.dt_dataset['test']['joint_2d'][::self.sample_stride, :, :2].astype(np.float32) # [N, 17, 2]
# res_w, res_h = self.res
trainset = trainset / res_w * 2 - offset
testset = testset / res_w * 2 - offset
if self.read_confidence:
train_confidence = self.dt_dataset['train']['confidence'][::self.sample_stride].astype(np.float32)
test_confidence = self.dt_dataset['test']['confidence'][::self.sample_stride].astype(np.float32)
if len(train_confidence.shape)==2:
train_confidence = train_confidence[:,:,None]
test_confidence = test_confidence[:,:,None]
trainset = np.concatenate((trainset, train_confidence), axis=2) # [N, 17, 3]
testset = np.concatenate((testset, test_confidence), axis=2) # [N, 17, 3]
return trainset, testset
def get_split_id(self):
if self.split_id_train is not None and self.split_id_test is not None:
return self.split_id_train, self.split_id_test
vid_list_train = self.dt_dataset['train']['source'][::self.sample_stride]
vid_list_test = self.dt_dataset['test']['source'][::self.sample_stride]
self.split_id_train = split_clips(vid_list_train, self.n_frames, self.data_stride_train)
self.split_id_test = split_clips(vid_list_test, self.n_frames, self.data_stride_test)
return self.split_id_train, self.split_id_test
def get_sliced_data(self):
train_data, test_data = self.read_2d()
train_labels, test_labels = self.read_3d()
split_id_train, split_id_test = self.get_split_id()
train_data, test_data = train_data[split_id_train], test_data[split_id_test] # (N, 27, 17, 3)
train_labels, test_labels = train_labels[split_id_train], test_labels[split_id_test] # (N, 27, 17, 3)
return train_data, test_data, train_labels, test_labels