|
""" |
|
Author: Yonglong Tian ([email protected]) |
|
Date: May 07, 2020 |
|
""" |
|
from __future__ import print_function |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class SupConLoss(nn.Module): |
|
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf. |
|
It also supports the unsupervised contrastive loss in SimCLR""" |
|
def __init__(self, temperature=0.07, contrast_mode='all', |
|
base_temperature=0.07): |
|
super(SupConLoss, self).__init__() |
|
self.temperature = temperature |
|
self.contrast_mode = contrast_mode |
|
self.base_temperature = base_temperature |
|
|
|
def forward(self, features, labels=None, mask=None): |
|
"""Compute loss for model. If both `labels` and `mask` are None, |
|
it degenerates to SimCLR unsupervised loss: |
|
https://arxiv.org/pdf/2002.05709.pdf |
|
|
|
Args: |
|
features: hidden vector of shape [bsz, n_views, ...]. |
|
labels: ground truth of shape [bsz]. |
|
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j |
|
has the same class as sample i. Can be asymmetric. |
|
Returns: |
|
A loss scalar. |
|
""" |
|
device = (torch.device('cuda') |
|
if features.is_cuda |
|
else torch.device('cpu')) |
|
|
|
if len(features.shape) < 3: |
|
raise ValueError('`features` needs to be [bsz, n_views, ...],' |
|
'at least 3 dimensions are required') |
|
if len(features.shape) > 3: |
|
features = features.view(features.shape[0], features.shape[1], -1) |
|
|
|
batch_size = features.shape[0] |
|
if labels is not None and mask is not None: |
|
raise ValueError('Cannot define both `labels` and `mask`') |
|
elif labels is None and mask is None: |
|
mask = torch.eye(batch_size, dtype=torch.float32).to(device) |
|
elif labels is not None: |
|
labels = labels.contiguous().view(-1, 1) |
|
if labels.shape[0] != batch_size: |
|
raise ValueError('Num of labels does not match num of features') |
|
mask = torch.eq(labels, labels.T).float().to(device) |
|
else: |
|
mask = mask.float().to(device) |
|
|
|
contrast_count = features.shape[1] |
|
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0) |
|
if self.contrast_mode == 'one': |
|
anchor_feature = features[:, 0] |
|
anchor_count = 1 |
|
elif self.contrast_mode == 'all': |
|
anchor_feature = contrast_feature |
|
anchor_count = contrast_count |
|
else: |
|
raise ValueError('Unknown mode: {}'.format(self.contrast_mode)) |
|
|
|
|
|
anchor_dot_contrast = torch.div( |
|
torch.matmul(anchor_feature, contrast_feature.T), |
|
self.temperature) |
|
|
|
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True) |
|
logits = anchor_dot_contrast - logits_max.detach() |
|
|
|
|
|
mask = mask.repeat(anchor_count, contrast_count) |
|
|
|
logits_mask = torch.scatter( |
|
torch.ones_like(mask), |
|
1, |
|
torch.arange(batch_size * anchor_count).view(-1, 1).to(device), |
|
0 |
|
) |
|
mask = mask * logits_mask |
|
|
|
|
|
exp_logits = torch.exp(logits) * logits_mask |
|
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)) |
|
|
|
|
|
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) |
|
|
|
|
|
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos |
|
loss = loss.view(anchor_count, batch_size).mean() |
|
|
|
return loss |
|
|