MotionBERT / lib /utils /vismo.py
walterzhu's picture
Upload 58 files
bbde80b
raw
history blame
14.9 kB
import numpy as np
import os
import cv2
import math
import copy
import imageio
import io
from tqdm import tqdm
from PIL import Image
from lib.utils.tools import ensure_dir
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from lib.utils.utils_smpl import *
import ipdb
def render_and_save(motion_input, save_path, keep_imgs=False, fps=25, color="#F96706#FB8D43#FDB381", with_conf=False, draw_face=False):
ensure_dir(os.path.dirname(save_path))
motion = copy.deepcopy(motion_input)
if motion.shape[-1]==2 or motion.shape[-1]==3:
motion = np.transpose(motion, (1,2,0)) #(T,17,D) -> (17,D,T)
if motion.shape[1]==2 or with_conf:
colors = hex2rgb(color)
if not with_conf:
J, D, T = motion.shape
motion_full = np.ones([J,3,T])
motion_full[:,:2,:] = motion
else:
motion_full = motion
motion_full[:,:2,:] = pixel2world_vis_motion(motion_full[:,:2,:])
motion2video(motion_full, save_path=save_path, colors=colors, fps=fps)
elif motion.shape[0]==6890:
# motion_world = pixel2world_vis_motion(motion, dim=3)
motion2video_mesh(motion, save_path=save_path, keep_imgs=keep_imgs, fps=fps, draw_face=draw_face)
else:
motion_world = pixel2world_vis_motion(motion, dim=3)
motion2video_3d(motion_world, save_path=save_path, keep_imgs=keep_imgs, fps=fps)
def pixel2world_vis(pose):
# pose: (17,2)
return (pose + [1, 1]) * 512 / 2
def pixel2world_vis_motion(motion, dim=2, is_tensor=False):
# pose: (17,2,N)
N = motion.shape[-1]
if dim==2:
offset = np.ones([2,N]).astype(np.float32)
else:
offset = np.ones([3,N]).astype(np.float32)
offset[2,:] = 0
if is_tensor:
offset = torch.tensor(offset)
return (motion + offset) * 512 / 2
def vis_data_batch(data_input, data_label, n_render=10, save_path='doodle/vis_train_data/'):
'''
data_input: [N,T,17,2/3]
data_label: [N,T,17,3]
'''
pathlib.Path(save_path).mkdir(parents=True, exist_ok=True)
for i in range(min(len(data_input), n_render)):
render_and_save(data_input[i][:,:,:2], '%s/input_%d.mp4' % (save_path, i))
render_and_save(data_label[i], '%s/gt_%d.mp4' % (save_path, i))
def get_img_from_fig(fig, dpi=120):
buf = io.BytesIO()
fig.savefig(buf, format="png", dpi=dpi, bbox_inches="tight", pad_inches=0)
buf.seek(0)
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
buf.close()
img = cv2.imdecode(img_arr, 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGBA)
return img
def rgb2rgba(color):
return (color[0], color[1], color[2], 255)
def hex2rgb(hex, number_of_colors=3):
h = hex
rgb = []
for i in range(number_of_colors):
h = h.lstrip('#')
hex_color = h[0:6]
rgb_color = [int(hex_color[i:i+2], 16) for i in (0, 2 ,4)]
rgb.append(rgb_color)
h = h[6:]
return rgb
def joints2image(joints_position, colors, transparency=False, H=1000, W=1000, nr_joints=49, imtype=np.uint8, grayscale=False, bg_color=(255, 255, 255)):
# joints_position: [17*2]
nr_joints = joints_position.shape[0]
if nr_joints == 49: # full joints(49): basic(15) + eyes(2) + toes(2) + hands(30)
limbSeq = [[0, 1], [1, 2], [1, 5], [1, 8], [2, 3], [3, 4], [5, 6], [6, 7], \
[8, 9], [8, 13], [9, 10], [10, 11], [11, 12], [13, 14], [14, 15], [15, 16],
]#[0, 17], [0, 18]] #ignore eyes
L = rgb2rgba(colors[0]) if transparency else colors[0]
M = rgb2rgba(colors[1]) if transparency else colors[1]
R = rgb2rgba(colors[2]) if transparency else colors[2]
colors_joints = [M, M, L, L, L, R, R,
R, M, L, L, L, L, R, R, R,
R, R, L] + [L] * 15 + [R] * 15
colors_limbs = [M, L, R, M, L, L, R,
R, L, R, L, L, L, R, R, R,
R, R]
elif nr_joints == 15: # basic joints(15) + (eyes(2))
limbSeq = [[0, 1], [1, 2], [1, 5], [1, 8], [2, 3], [3, 4], [5, 6], [6, 7],
[8, 9], [8, 12], [9, 10], [10, 11], [12, 13], [13, 14]]
# [0, 15], [0, 16] two eyes are not drawn
L = rgb2rgba(colors[0]) if transparency else colors[0]
M = rgb2rgba(colors[1]) if transparency else colors[1]
R = rgb2rgba(colors[2]) if transparency else colors[2]
colors_joints = [M, M, L, L, L, R, R,
R, M, L, L, L, R, R, R]
colors_limbs = [M, L, R, M, L, L, R,
R, L, R, L, L, R, R]
elif nr_joints == 17: # H36M, 0: 'root',
# 1: 'rhip',
# 2: 'rkne',
# 3: 'rank',
# 4: 'lhip',
# 5: 'lkne',
# 6: 'lank',
# 7: 'belly',
# 8: 'neck',
# 9: 'nose',
# 10: 'head',
# 11: 'lsho',
# 12: 'lelb',
# 13: 'lwri',
# 14: 'rsho',
# 15: 'relb',
# 16: 'rwri'
limbSeq = [[0, 1], [1, 2], [2, 3], [0, 4], [4, 5], [5, 6], [0, 7], [7, 8], [8, 9], [8, 11], [8, 14], [9, 10], [11, 12], [12, 13], [14, 15], [15, 16]]
L = rgb2rgba(colors[0]) if transparency else colors[0]
M = rgb2rgba(colors[1]) if transparency else colors[1]
R = rgb2rgba(colors[2]) if transparency else colors[2]
colors_joints = [M, R, R, R, L, L, L, M, M, M, M, L, L, L, R, R, R]
colors_limbs = [R, R, R, L, L, L, M, M, M, L, R, M, L, L, R, R]
else:
raise ValueError("Only support number of joints be 49 or 17 or 15")
if transparency:
canvas = np.zeros(shape=(H, W, 4))
else:
canvas = np.ones(shape=(H, W, 3)) * np.array(bg_color).reshape([1, 1, 3])
hips = joints_position[0]
neck = joints_position[8]
torso_length = ((hips[1] - neck[1]) ** 2 + (hips[0] - neck[0]) ** 2) ** 0.5
head_radius = int(torso_length/4.5)
end_effectors_radius = int(torso_length/15)
end_effectors_radius = 7
joints_radius = 7
for i in range(0, len(colors_joints)):
if i in (17, 18):
continue
elif i > 18:
radius = 2
else:
radius = joints_radius
if len(joints_position[i])==3: # If there is confidence, weigh by confidence
weight = joints_position[i][2]
if weight==0:
continue
cv2.circle(canvas, (int(joints_position[i][0]),int(joints_position[i][1])), radius, colors_joints[i], thickness=-1)
stickwidth = 2
for i in range(len(limbSeq)):
limb = limbSeq[i]
cur_canvas = canvas.copy()
point1_index = limb[0]
point2_index = limb[1]
point1 = joints_position[point1_index]
point2 = joints_position[point2_index]
if len(point1)==3: # If there is confidence, weigh by confidence
limb_weight = min(point1[2], point2[2])
if limb_weight==0:
bb = bounding_box(canvas)
canvas_cropped = canvas[:,bb[2]:bb[3], :]
continue
X = [point1[1], point2[1]]
Y = [point1[0], point2[0]]
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
alpha = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(alpha), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors_limbs[i])
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
bb = bounding_box(canvas)
canvas_cropped = canvas[:,bb[2]:bb[3], :]
canvas = canvas.astype(imtype)
canvas_cropped = canvas_cropped.astype(imtype)
if grayscale:
if transparency:
canvas = cv2.cvtColor(canvas, cv2.COLOR_RGBA2GRAY)
canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGBA2GRAY)
else:
canvas = cv2.cvtColor(canvas, cv2.COLOR_RGB2GRAY)
canvas_cropped = cv2.cvtColor(canvas_cropped, cv2.COLOR_RGB2GRAY)
return [canvas, canvas_cropped]
def motion2video(motion, save_path, colors, h=512, w=512, bg_color=(255, 255, 255), transparency=False, motion_tgt=None, fps=25, save_frame=False, grayscale=False, show_progress=True, as_array=False):
nr_joints = motion.shape[0]
# as_array = save_path.endswith(".npy")
vlen = motion.shape[-1]
out_array = np.zeros([vlen, h, w, 3]) if as_array else None
videowriter = None if as_array else imageio.get_writer(save_path, fps=fps)
if save_frame:
frames_dir = save_path[:-4] + '-frames'
ensure_dir(frames_dir)
iterator = range(vlen)
if show_progress: iterator = tqdm(iterator)
for i in iterator:
[img, img_cropped] = joints2image(motion[:, :, i], colors, transparency=transparency, bg_color=bg_color, H=h, W=w, nr_joints=nr_joints, grayscale=grayscale)
if motion_tgt is not None:
[img_tgt, img_tgt_cropped] = joints2image(motion_tgt[:, :, i], colors, transparency=transparency, bg_color=bg_color, H=h, W=w, nr_joints=nr_joints, grayscale=grayscale)
img_ori = img.copy()
img = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0)
img_cropped = cv2.addWeighted(img_tgt, 0.3, img_ori, 0.7, 0)
bb = bounding_box(img_cropped)
img_cropped = img_cropped[:, bb[2]:bb[3], :]
if save_frame:
save_image(img_cropped, os.path.join(frames_dir, "%04d.png" % i))
if as_array: out_array[i] = img
else: videowriter.append_data(img)
if not as_array:
videowriter.close()
return out_array
def motion2video_3d(motion, save_path, fps=25, keep_imgs = False):
# motion: (17,3,N)
videowriter = imageio.get_writer(save_path, fps=fps)
vlen = motion.shape[-1]
save_name = save_path.split('.')[0]
frames = []
joint_pairs = [[0, 1], [1, 2], [2, 3], [0, 4], [4, 5], [5, 6], [0, 7], [7, 8], [8, 9], [8, 11], [8, 14], [9, 10], [11, 12], [12, 13], [14, 15], [15, 16]]
joint_pairs_left = [[8, 11], [11, 12], [12, 13], [0, 4], [4, 5], [5, 6]]
joint_pairs_right = [[8, 14], [14, 15], [15, 16], [0, 1], [1, 2], [2, 3]]
color_mid = "#00457E"
color_left = "#02315E"
color_right = "#2F70AF"
for f in tqdm(range(vlen)):
j3d = motion[:,:,f]
fig = plt.figure(0, figsize=(10, 10))
ax = plt.axes(projection="3d")
ax.set_xlim(-512, 0)
ax.set_ylim(-256, 256)
ax.set_zlim(-512, 0)
# ax.set_xlabel('X')
# ax.set_ylabel('Y')
# ax.set_zlabel('Z')
ax.view_init(elev=12., azim=80)
plt.tick_params(left = False, right = False , labelleft = False ,
labelbottom = False, bottom = False)
for i in range(len(joint_pairs)):
limb = joint_pairs[i]
xs, ys, zs = [np.array([j3d[limb[0], j], j3d[limb[1], j]]) for j in range(3)]
if joint_pairs[i] in joint_pairs_left:
ax.plot(-xs, -zs, -ys, color=color_left, lw=3, marker='o', markerfacecolor='w', markersize=3, markeredgewidth=2) # axis transformation for visualization
elif joint_pairs[i] in joint_pairs_right:
ax.plot(-xs, -zs, -ys, color=color_right, lw=3, marker='o', markerfacecolor='w', markersize=3, markeredgewidth=2) # axis transformation for visualization
else:
ax.plot(-xs, -zs, -ys, color=color_mid, lw=3, marker='o', markerfacecolor='w', markersize=3, markeredgewidth=2) # axis transformation for visualization
frame_vis = get_img_from_fig(fig)
videowriter.append_data(frame_vis)
videowriter.close()
def motion2video_mesh(motion, save_path, fps=25, keep_imgs = False, draw_face=True):
videowriter = imageio.get_writer(save_path, fps=fps)
vlen = motion.shape[-1]
draw_skele = (motion.shape[0]==17)
save_name = save_path.split('.')[0]
smpl_faces = get_smpl_faces()
frames = []
joint_pairs = [[0, 1], [1, 2], [2, 3], [0, 4], [4, 5], [5, 6], [0, 7], [7, 8], [8, 9], [8, 11], [8, 14], [9, 10], [11, 12], [12, 13], [14, 15], [15, 16]]
X, Y, Z = motion[:, 0], motion[:, 1], motion[:, 2]
max_range = np.array([X.max()-X.min(), Y.max()-Y.min(), Z.max()-Z.min()]).max() / 2.0
mid_x = (X.max()+X.min()) * 0.5
mid_y = (Y.max()+Y.min()) * 0.5
mid_z = (Z.max()+Z.min()) * 0.5
for f in tqdm(range(vlen)):
j3d = motion[:,:,f]
plt.gca().set_axis_off()
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
fig = plt.figure(0, figsize=(8, 8))
ax = plt.axes(projection="3d", proj_type = 'ortho')
ax.set_xlim(mid_x - max_range, mid_x + max_range)
ax.set_ylim(mid_y - max_range, mid_y + max_range)
ax.set_zlim(mid_z - max_range, mid_z + max_range)
ax.view_init(elev=-90, azim=-90)
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0, 0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.axis('off')
plt.xticks([])
plt.yticks([])
# plt.savefig("filename.png", transparent=True, bbox_inches="tight", pad_inches=0)
if draw_skele:
for i in range(len(joint_pairs)):
limb = joint_pairs[i]
xs, ys, zs = [np.array([j3d[limb[0], j], j3d[limb[1], j]]) for j in range(3)]
ax.plot(-xs, -zs, -ys, c=[0,0,0], lw=3, marker='o', markerfacecolor='w', markersize=3, markeredgewidth=2) # axis transformation for visualization
elif draw_face:
ax.plot_trisurf(j3d[:, 0], j3d[:, 1], triangles=smpl_faces, Z=j3d[:, 2], color=(166/255.0,188/255.0,218/255.0,0.9))
else:
ax.scatter(j3d[:, 0], j3d[:, 1], j3d[:, 2], s=3, c='w', edgecolors='grey')
frame_vis = get_img_from_fig(fig, dpi=128)
plt.cla()
videowriter.append_data(frame_vis)
videowriter.close()
def save_image(image_numpy, image_path):
image_pil = Image.fromarray(image_numpy)
image_pil.save(image_path)
def bounding_box(img):
a = np.where(img != 0)
bbox = np.min(a[0]), np.max(a[0]), np.min(a[1]), np.max(a[1])
return bbox