import torch import numpy as np from torch.nn import functional as F import copy # from lib.utils.rotation_conversions import axis_angle_to_matrix, matrix_to_rotation_6d def batch_rodrigues(axisang): # This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L37 # axisang N x 3 axisang_norm = torch.norm(axisang + 1e-8, p=2, dim=1) angle = torch.unsqueeze(axisang_norm, -1) axisang_normalized = torch.div(axisang, angle) angle = angle * 0.5 v_cos = torch.cos(angle) v_sin = torch.sin(angle) quat = torch.cat([v_cos, v_sin * axisang_normalized], dim=1) rot_mat = quat2mat(quat) rot_mat = rot_mat.view(rot_mat.shape[0], 9) return rot_mat def quat2mat(quat): """ This function is borrowed from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py#L50 Convert quaternion coefficients to rotation matrix. Args: quat: size = [batch_size, 4] 4 <===>(w, x, y, z) Returns: Rotation matrix corresponding to the quaternion -- size = [batch_size, 3, 3] """ norm_quat = quat norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] batch_size = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w * x, w * y, w * z xy, xz, yz = x * y, x * z, y * z rotMat = torch.stack([ w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2 ], dim=1).view(batch_size, 3, 3) return rotMat def rotation_matrix_to_angle_axis(rotation_matrix): """ This function is borrowed from https://github.com/kornia/kornia Convert 3x4 rotation matrix to Rodrigues vector Args: rotation_matrix (Tensor): rotation matrix. Returns: Tensor: Rodrigues vector transformation. Shape: - Input: :math:`(N, 3, 4)` - Output: :math:`(N, 3)` Example: >>> input = torch.rand(2, 3, 4) # Nx4x4 >>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 """ if rotation_matrix.shape[1:] == (3,3): rot_mat = rotation_matrix.reshape(-1, 3, 3) hom = torch.tensor([0, 0, 1], dtype=torch.float32, device=rotation_matrix.device).reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1) rotation_matrix = torch.cat([rot_mat, hom], dim=-1) quaternion = rotation_matrix_to_quaternion(rotation_matrix) aa = quaternion_to_angle_axis(quaternion) aa[torch.isnan(aa)] = 0.0 return aa def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: """ This function is borrowed from https://github.com/kornia/kornia Convert quaternion vector to angle axis of rotation. Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h Args: quaternion (torch.Tensor): tensor with quaternions. Return: torch.Tensor: tensor with angle axis of rotation. Shape: - Input: :math:`(*, 4)` where `*` means, any number of dimensions - Output: :math:`(*, 3)` Example: >>> quaternion = torch.rand(2, 4) # Nx4 >>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 """ if not torch.is_tensor(quaternion): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(quaternion))) if not quaternion.shape[-1] == 4: raise ValueError("Input must be a tensor of shape Nx4 or 4. Got {}" .format(quaternion.shape)) # unpack input and compute conversion q1: torch.Tensor = quaternion[..., 1] q2: torch.Tensor = quaternion[..., 2] q3: torch.Tensor = quaternion[..., 3] sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) cos_theta: torch.Tensor = quaternion[..., 0] two_theta: torch.Tensor = 2.0 * torch.where( cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), torch.atan2(sin_theta, cos_theta)) k_pos: torch.Tensor = two_theta / sin_theta k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] angle_axis[..., 0] += q1 * k angle_axis[..., 1] += q2 * k angle_axis[..., 2] += q3 * k return angle_axis def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): """ This function is borrowed from https://github.com/kornia/kornia Convert 3x4 rotation matrix to 4d quaternion vector This algorithm is based on algorithm described in https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 Args: rotation_matrix (Tensor): the rotation matrix to convert. Return: Tensor: the rotation in quaternion Shape: - Input: :math:`(N, 3, 4)` - Output: :math:`(N, 4)` Example: >>> input = torch.rand(4, 3, 4) # Nx3x4 >>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 """ if not torch.is_tensor(rotation_matrix): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(rotation_matrix))) if len(rotation_matrix.shape) > 3: raise ValueError( "Input size must be a three dimensional tensor. Got {}".format( rotation_matrix.shape)) if not rotation_matrix.shape[-2:] == (3, 4): raise ValueError( "Input size must be a N x 3 x 4 tensor. Got {}".format( rotation_matrix.shape)) rmat_t = torch.transpose(rotation_matrix, 1, 2) mask_d2 = rmat_t[:, 2, 2] < eps mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q0 = torch.stack([rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2]], -1) t0_rep = t0.repeat(4, 1).t() t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q1 = torch.stack([rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]], -1) t1_rep = t1.repeat(4, 1).t() t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q2 = torch.stack([rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2], -1) t2_rep = t2.repeat(4, 1).t() t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q3 = torch.stack([t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0]], -1) t3_rep = t3.repeat(4, 1).t() mask_c0 = mask_d2 * mask_d0_d1 mask_c1 = mask_d2 * ~mask_d0_d1 mask_c2 = ~mask_d2 * mask_d0_nd1 mask_c3 = ~mask_d2 * ~mask_d0_nd1 mask_c0 = mask_c0.view(-1, 1).type_as(q0) mask_c1 = mask_c1.view(-1, 1).type_as(q1) mask_c2 = mask_c2.view(-1, 1).type_as(q2) mask_c3 = mask_c3.view(-1, 1).type_as(q3) q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa t2_rep * mask_c2 + t3_rep * mask_c3) # noqa q *= 0.5 return q def estimate_translation_np(S, joints_2d, joints_conf, focal_length=5000., img_size=224.): """ This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. Input: S: (25, 3) 3D joint locations joints: (25, 3) 2D joint locations and confidence Returns: (3,) camera translation vector """ num_joints = S.shape[0] # focal length f = np.array([focal_length,focal_length]) # optical center center = np.array([img_size/2., img_size/2.]) # transformations Z = np.reshape(np.tile(S[:,2],(2,1)).T,-1) XY = np.reshape(S[:,0:2],-1) O = np.tile(center,num_joints) F = np.tile(f,num_joints) weight2 = np.reshape(np.tile(np.sqrt(joints_conf),(2,1)).T,-1) # least squares Q = np.array([F*np.tile(np.array([1,0]),num_joints), F*np.tile(np.array([0,1]),num_joints), O-np.reshape(joints_2d,-1)]).T c = (np.reshape(joints_2d,-1)-O)*Z - F*XY # weighted least squares W = np.diagflat(weight2) Q = np.dot(W,Q) c = np.dot(W,c) # square matrix A = np.dot(Q.T,Q) b = np.dot(Q.T,c) # solution trans = np.linalg.solve(A, b) return trans def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.): """ This function is borrowed from https://github.com/nkolot/SPIN/utils/geometry.py Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. Input: S: (B, 49, 3) 3D joint locations joints: (B, 49, 3) 2D joint locations and confidence Returns: (B, 3) camera translation vectors """ device = S.device # Use only joints 25:49 (GT joints) S = S[:, 25:, :].cpu().numpy() joints_2d = joints_2d[:, 25:, :].cpu().numpy() joints_conf = joints_2d[:, :, -1] joints_2d = joints_2d[:, :, :-1] trans = np.zeros((S.shape[0], 3), dtype=np.float32) # Find the translation for each example in the batch for i in range(S.shape[0]): S_i = S[i] joints_i = joints_2d[i] conf_i = joints_conf[i] trans[i] = estimate_translation_np(S_i, joints_i, conf_i, focal_length=focal_length, img_size=img_size) return torch.from_numpy(trans).to(device) def rot6d_to_rotmat_spin(x): """Convert 6D rotation representation to 3x3 rotation matrix. Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 Input: (B,6) Batch of 6-D rotation representations Output: (B,3,3) Batch of corresponding rotation matrices """ x = x.view(-1,3,2) a1 = x[:, :, 0] a2 = x[:, :, 1] b1 = F.normalize(a1) b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) # inp = a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1 # denom = inp.pow(2).sum(dim=1).sqrt().unsqueeze(-1) + 1e-8 # b2 = inp / denom b3 = torch.cross(b1, b2) return torch.stack((b1, b2, b3), dim=-1) def rot6d_to_rotmat(x): x = x.view(-1,3,2) # Normalize the first vector b1 = F.normalize(x[:, :, 0], dim=1, eps=1e-6) dot_prod = torch.sum(b1 * x[:, :, 1], dim=1, keepdim=True) # Compute the second vector by finding the orthogonal complement to it b2 = F.normalize(x[:, :, 1] - dot_prod * b1, dim=-1, eps=1e-6) # Finish building the basis by taking the cross product b3 = torch.cross(b1, b2, dim=1) rot_mats = torch.stack([b1, b2, b3], dim=-1) return rot_mats def rigid_transform_3D(A, B): n, dim = A.shape centroid_A = np.mean(A, axis = 0) centroid_B = np.mean(B, axis = 0) H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n U, s, V = np.linalg.svd(H) R = np.dot(np.transpose(V), np.transpose(U)) if np.linalg.det(R) < 0: s[-1] = -s[-1] V[2] = -V[2] R = np.dot(np.transpose(V), np.transpose(U)) varP = np.var(A, axis=0).sum() c = 1/varP * np.sum(s) t = -np.dot(c*R, np.transpose(centroid_A)) + np.transpose(centroid_B) return c, R, t def rigid_align(A, B): c, R, t = rigid_transform_3D(A, B) A2 = np.transpose(np.dot(c*R, np.transpose(A))) + t return A2 def compute_error(output, target): with torch.no_grad(): pred_verts = output[0]['verts'].reshape(-1, 6890, 3) target_verts = target['verts'].reshape(-1, 6890, 3) pred_j3ds = output[0]['kp_3d'].reshape(-1, 17, 3) target_j3ds = target['kp_3d'].reshape(-1, 17, 3) # mpve pred_verts = pred_verts - pred_j3ds[:, :1, :] target_verts = target_verts - target_j3ds[:, :1, :] mpves = torch.sqrt(((pred_verts - target_verts) ** 2).sum(dim=-1)).mean(dim=-1).cpu() # mpjpe pred_j3ds = pred_j3ds - pred_j3ds[:, :1, :] target_j3ds = target_j3ds - target_j3ds[:, :1, :] mpjpes = torch.sqrt(((pred_j3ds - target_j3ds) ** 2).sum(dim=-1)).mean(dim=-1).cpu() return mpjpes.mean(), mpves.mean() def compute_error_frames(output, target): with torch.no_grad(): pred_verts = output[0]['verts'].reshape(-1, 6890, 3) target_verts = target['verts'].reshape(-1, 6890, 3) pred_j3ds = output[0]['kp_3d'].reshape(-1, 17, 3) target_j3ds = target['kp_3d'].reshape(-1, 17, 3) # mpve pred_verts = pred_verts - pred_j3ds[:, :1, :] target_verts = target_verts - target_j3ds[:, :1, :] mpves = torch.sqrt(((pred_verts - target_verts) ** 2).sum(dim=-1)).mean(dim=-1).cpu() # mpjpe pred_j3ds = pred_j3ds - pred_j3ds[:, :1, :] target_j3ds = target_j3ds - target_j3ds[:, :1, :] mpjpes = torch.sqrt(((pred_j3ds - target_j3ds) ** 2).sum(dim=-1)).mean(dim=-1).cpu() return mpjpes, mpves def evaluate_mesh(results): pred_verts = results['verts'].reshape(-1, 6890, 3) target_verts = results['verts_gt'].reshape(-1, 6890, 3) pred_j3ds = results['kp_3d'].reshape(-1, 17, 3) target_j3ds = results['kp_3d_gt'].reshape(-1, 17, 3) num_samples = pred_j3ds.shape[0] # mpve pred_verts = pred_verts - pred_j3ds[:, :1, :] target_verts = target_verts - target_j3ds[:, :1, :] mpve = np.mean(np.mean(np.sqrt(np.square(pred_verts - target_verts).sum(axis=2)), axis=1)) # mpjpe-17 & mpjpe-14 h36m_17_to_14 = (1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16) pred_j3ds_17j = (pred_j3ds - pred_j3ds[:, :1, :]) target_j3ds_17j = (target_j3ds - target_j3ds[:, :1, :]) pred_j3ds = pred_j3ds_17j[:, h36m_17_to_14, :].copy() target_j3ds = target_j3ds_17j[:, h36m_17_to_14, :].copy() mpjpe = np.mean(np.sqrt(np.square(pred_j3ds - target_j3ds).sum(axis=2)), axis=1) # (N, ) mpjpe_17j = np.mean(np.sqrt(np.square(pred_j3ds_17j - target_j3ds_17j).sum(axis=2)), axis=1) # (N, ) pred_j3ds_pa, pred_j3ds_pa_17j = [], [] for n in range(num_samples): pred_j3ds_pa.append(rigid_align(pred_j3ds[n], target_j3ds[n])) pred_j3ds_pa_17j.append(rigid_align(pred_j3ds_17j[n], target_j3ds_17j[n])) pred_j3ds_pa = np.array(pred_j3ds_pa) pred_j3ds_pa_17j = np.array(pred_j3ds_pa_17j) pa_mpjpe = np.mean(np.sqrt(np.square(pred_j3ds_pa - target_j3ds).sum(axis=2)), axis=1) # (N, ) pa_mpjpe_17j = np.mean(np.sqrt(np.square(pred_j3ds_pa_17j - target_j3ds_17j).sum(axis=2)), axis=1) # (N, ) error_dict = { 'mpve': mpve.mean(), 'mpjpe': mpjpe.mean(), 'pa_mpjpe': pa_mpjpe.mean(), 'mpjpe_17j': mpjpe_17j.mean(), 'pa_mpjpe_17j': pa_mpjpe_17j.mean(), } return error_dict def rectify_pose(pose): """ Rectify "upside down" people in global coord Args: pose (72,): Pose. Returns: Rotated pose. """ pose = pose.copy() R_mod = cv2.Rodrigues(np.array([np.pi, 0, 0]))[0] R_root = cv2.Rodrigues(pose[:3])[0] new_root = R_root.dot(R_mod) pose[:3] = cv2.Rodrigues(new_root)[0].reshape(3) return pose def flip_thetas(thetas): """Flip thetas. Parameters ---------- thetas : numpy.ndarray Joints in shape (F, num_thetas, 3) theta_pairs : list List of theta pairs. Returns ------- numpy.ndarray Flipped thetas with shape (F, num_thetas, 3) """ #Joint pairs which defines the pairs of joint to be swapped when the image is flipped horizontally. theta_pairs = ((1, 2), (4, 5), (7, 8), (10, 11), (13, 14), (16, 17), (18, 19), (20, 21), (22, 23)) thetas_flip = thetas.copy() # reflect horizontally thetas_flip[:, :, 1] = -1 * thetas_flip[:, :, 1] thetas_flip[:, :, 2] = -1 * thetas_flip[:, :, 2] # change left-right parts for pair in theta_pairs: thetas_flip[:, pair[0], :], thetas_flip[:, pair[1], :] = \ thetas_flip[:, pair[1], :], thetas_flip[:, pair[0], :].copy() return thetas_flip def flip_thetas_batch(thetas): """Flip thetas in batch. Parameters ---------- thetas : numpy.array Joints in shape (N, F, num_thetas*3) theta_pairs : list List of theta pairs. Returns ------- numpy.array Flipped thetas with shape (N, F, num_thetas*3) """ #Joint pairs which defines the pairs of joint to be swapped when the image is flipped horizontally. theta_pairs = ((1, 2), (4, 5), (7, 8), (10, 11), (13, 14), (16, 17), (18, 19), (20, 21), (22, 23)) thetas_flip = copy.deepcopy(thetas).reshape(*thetas.shape[:2], 24, 3) # reflect horizontally thetas_flip[:, :, :, 1] = -1 * thetas_flip[:, :, :, 1] thetas_flip[:, :, :, 2] = -1 * thetas_flip[:, :, :, 2] # change left-right parts for pair in theta_pairs: thetas_flip[:, :, pair[0], :], thetas_flip[:, :, pair[1], :] = \ thetas_flip[:, :, pair[1], :], thetas_flip[:, :, pair[0], :].clone() return thetas_flip.reshape(*thetas.shape[:2], -1) # def smpl_aa_to_ortho6d(smpl_aa): # # [...,72] -> [...,144] # rot_aa = smpl_aa.reshape([-1,24,3]) # rotmat = axis_angle_to_matrix(rot_aa) # rot6d = matrix_to_rotation_6d(rotmat) # rot6d = rot6d.reshape(-1,24*6) # return rot6d