--- thumbnail: "https://motionbert.github.io/assets/teaser.gif" tags: - 3D Human Pose Estimation - Skeleton-based Action Recognition - Mesh Recovery arxiv: "2210.06551" --- # MotionBERT This is the official PyTorch implementation of the paper *"[Learning Human Motion Representations: A Unified Perspective](https://arxiv.org/pdf/2210.06551.pdf)"*. ## Installation ```bash conda create -n motionbert python=3.7 anaconda conda activate motionbert # Please install PyTorch according to your CUDA version. conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia pip install -r requirements.txt ``` ## Getting Started | Task | Document | | --------------------------------- | ------------------------------------------------------------ | | Pretrain | [docs/pretrain.md](docs/pretrain.md) | | 3D human pose estimation | [docs/pose3d.md](docs/pose3d.md) | | Skeleton-based action recognition | [docs/action.md](docs/action.md) | | Mesh recovery | [docs/mesh.md](docs/mesh.md) | ## Applications ### In-the-wild inference (for custom videos) Please refer to [docs/inference.md](docs/inference.md). ### Using MotionBERT for *human-centric* video representations ```python ''' x: 2D skeletons type = shape = [batch size * frames * joints(17) * channels(3)] MotionBERT: pretrained human motion encoder type = E: encoded motion representation type = shape = [batch size * frames * joints(17) * channels(512)] ''' E = MotionBERT.get_representation(x) ``` > **Hints** > > 1. The model could handle different input lengths (no more than 243 frames). No need to explicitly specify the input length elsewhere. > 2. The model uses 17 body keypoints ([H36M format](https://github.com/JimmySuen/integral-human-pose/blob/master/pytorch_projects/common_pytorch/dataset/hm36.py#L32)). If you are using other formats, please convert them before feeding to MotionBERT. > 3. Please refer to [model_action.py](lib/model/model_action.py) and [model_mesh.py](lib/model/model_mesh.py) for examples of (easily) adapting MotionBERT to different downstream tasks. > 4. For RGB videos, you need to extract 2D poses ([inference.md](docs/inference.md)), convert the keypoint format ([dataset_wild.py](lib/data/dataset_wild.py)), and then feed to MotionBERT ([infer_wild.py](infer_wild.py)). > ## Model Zoo | Model | Download Link | Config | Performance | | ------------------------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ---------------- | | MotionBERT (162MB) | [OneDrive](https://1drv.ms/f/s!AvAdh0LSjEOlgS425shtVi9e5reN?e=6UeBa2) | [pretrain/MB_pretrain.yaml](configs/pretrain/MB_pretrain.yaml) | - | | MotionBERT-Lite (61MB) | [OneDrive](https://1drv.ms/f/s!AvAdh0LSjEOlgS27Ydcbpxlkl0ng?e=rq2Btn) | [pretrain/MB_lite.yaml](configs/pretrain/MB_lite.yaml) | - | | 3D Pose (H36M-SH, scratch) | [OneDrive](https://1drv.ms/f/s!AvAdh0LSjEOlgSvNejMQ0OHxMGZC?e=KcwBk1) | [pose3d/MB_train_h36m.yaml](configs/pose3d/MB_train_h36m.yaml) | 39.2mm (MPJPE) | | 3D Pose (H36M-SH, ft) | [OneDrive](https://1drv.ms/f/s!AvAdh0LSjEOlgSoTqtyR5Zsgi8_Z?e=rn4VJf) | [pose3d/MB_ft_h36m.yaml](configs/pose3d/MB_ft_h36m.yaml) | 37.2mm (MPJPE) | | Action Recognition (x-sub, ft) | [OneDrive](https://1drv.ms/f/s!AvAdh0LSjEOlgTX23yT_NO7RiZz-?e=nX6w2j) | [action/MB_ft_NTU60_xsub.yaml](configs/action/MB_ft_NTU60_xsub.yaml) | 97.2% (Top1 Acc) | | Action Recognition (x-view, ft) | [OneDrive](https://1drv.ms/f/s!AvAdh0LSjEOlgTaNiXw2Nal-g37M?e=lSkE4T) | [action/MB_ft_NTU60_xview.yaml](configs/action/MB_ft_NTU60_xview.yaml) | 93.0% (Top1 Acc) | | Mesh (with 3DPW, ft) | [OneDrive](https://1drv.ms/f/s!AvAdh0LSjEOlgTmgYNslCDWMNQi9?e=WjcB1F) | [mesh/MB_ft_pw3d.yaml](configs/mesh/MB_ft_pw3d.yaml) | 88.1mm (MPVE) | In most use cases (especially with finetuning), `MotionBERT-Lite` gives a similar performance with lower computation overhead. ## TODO - [x] Scripts and docs for pretraining - [x] Demo for custom videos ## Citation If you find our work useful for your project, please consider citing the paper: ```bibtex @article{motionbert2022, title = {Learning Human Motion Representations: A Unified Perspective}, author = {Zhu, Wentao and Ma, Xiaoxuan and Liu, Zhaoyang and Liu, Libin and Wu, Wayne and Wang, Yizhou}, year = {2022}, journal = {arXiv preprint arXiv:2210.06551}, } ```