import torch import torch.nn as nn import ipdb from lib.utils.utils_mesh import batch_rodrigues from lib.model.loss import * class MeshLoss(nn.Module): def __init__( self, loss_type='MSE', device='cuda', ): super(MeshLoss, self).__init__() self.device = device self.loss_type = loss_type if loss_type == 'MSE': self.criterion_keypoints = nn.MSELoss(reduction='none').to(self.device) self.criterion_regr = nn.MSELoss().to(self.device) elif loss_type == 'L1': self.criterion_keypoints = nn.L1Loss(reduction='none').to(self.device) self.criterion_regr = nn.L1Loss().to(self.device) def forward( self, smpl_output, data_gt, ): # to reduce time dimension reduce = lambda x: x.reshape((x.shape[0] * x.shape[1],) + x.shape[2:]) data_3d_theta = reduce(data_gt['theta']) preds = smpl_output[-1] pred_theta = preds['theta'] theta_size = pred_theta.shape[:2] pred_theta = reduce(pred_theta) preds_local = preds['kp_3d'] - preds['kp_3d'][:, :, 0:1,:] # (N, T, 17, 3) gt_local = data_gt['kp_3d'] - data_gt['kp_3d'][:, :, 0:1,:] real_shape, pred_shape = data_3d_theta[:, 72:], pred_theta[:, 72:] real_pose, pred_pose = data_3d_theta[:, :72], pred_theta[:, :72] loss_dict = {} loss_dict['loss_3d_pos'] = loss_mpjpe(preds_local, gt_local) loss_dict['loss_3d_scale'] = n_mpjpe(preds_local, gt_local) loss_dict['loss_3d_velocity'] = loss_velocity(preds_local, gt_local) loss_dict['loss_lv'] = loss_limb_var(preds_local) loss_dict['loss_lg'] = loss_limb_gt(preds_local, gt_local) loss_dict['loss_a'] = loss_angle(preds_local, gt_local) loss_dict['loss_av'] = loss_angle_velocity(preds_local, gt_local) if pred_theta.shape[0] > 0: loss_pose, loss_shape = self.smpl_losses(pred_pose, pred_shape, real_pose, real_shape) loss_norm = torch.norm(pred_theta, dim=-1).mean() loss_dict['loss_shape'] = loss_shape loss_dict['loss_pose'] = loss_pose loss_dict['loss_norm'] = loss_norm return loss_dict def smpl_losses(self, pred_rotmat, pred_betas, gt_pose, gt_betas): pred_rotmat_valid = batch_rodrigues(pred_rotmat.reshape(-1,3)).reshape(-1, 24, 3, 3) gt_rotmat_valid = batch_rodrigues(gt_pose.reshape(-1,3)).reshape(-1, 24, 3, 3) pred_betas_valid = pred_betas gt_betas_valid = gt_betas if len(pred_rotmat_valid) > 0: loss_regr_pose = self.criterion_regr(pred_rotmat_valid, gt_rotmat_valid) loss_regr_betas = self.criterion_regr(pred_betas_valid, gt_betas_valid) else: loss_regr_pose = torch.FloatTensor(1).fill_(0.).to(self.device) loss_regr_betas = torch.FloatTensor(1).fill_(0.).to(self.device) return loss_regr_pose, loss_regr_betas