File size: 2,106 Bytes
c4ab737 52f5c2e c4ab737 52f5c2e 7dc85a2 c4ab737 52f5c2e c4ab737 7dc85a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- generated_from_trainer
datasets:
- wanasash/enwaucymraeg
metrics:
- wer
model-index:
- name: whisper-large-v2-ec
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: wanasash/enwaucymraeg default
type: wanasash/enwaucymraeg
args: default
metrics:
- name: Wer
type: wer
value: 0.21671018276762402
language:
- cy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-v2-ec
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the wanasash/enwaucymraeg default dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5119
- Wer: 0.2167
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 0.0112 | 13.6054 | 1000 | 0.3912 | 0.2395 |
| 0.0004 | 27.2109 | 2000 | 0.4532 | 0.2245 |
| 0.0002 | 40.8163 | 3000 | 0.4882 | 0.2175 |
| 0.0001 | 54.4218 | 4000 | 0.5051 | 0.2148 |
| 0.0001 | 68.0272 | 5000 | 0.5119 | 0.2167 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |