--- license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer datasets: - wanasash/enwaucymraeg metrics: - wer model-index: - name: whisper-large-v2-ec results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: wanasash/enwaucymraeg default type: wanasash/enwaucymraeg args: default metrics: - name: Wer type: wer value: 0.21671018276762402 language: - cy --- # whisper-large-v2-ec This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the wanasash/enwaucymraeg default dataset. It achieves the following results on the evaluation set: - Loss: 0.5119 - Wer: 0.2167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0112 | 13.6054 | 1000 | 0.3912 | 0.2395 | | 0.0004 | 27.2109 | 2000 | 0.4532 | 0.2245 | | 0.0002 | 40.8163 | 3000 | 0.4882 | 0.2175 | | 0.0001 | 54.4218 | 4000 | 0.5051 | 0.2148 | | 0.0001 | 68.0272 | 5000 | 0.5119 | 0.2167 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1