--- library_name: transformers base_model: huggingface/CodeBERTa-small-v1 tags: - generated_from_trainer metrics: - f1 - accuracy - precision - recall model-index: - name: CodeBERTa-small-v1-sourcecode-detection-clf results: [] --- # CodeBERTa-small-v1-sourcecode-detection-clf This model is a fine-tuned version of [huggingface/CodeBERTa-small-v1](https://huggingface.co/huggingface/CodeBERTa-small-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0171 - F1: 0.9975 - Accuracy: 0.9975 - Precision: 0.9975 - Recall: 0.9975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 320 - eval_batch_size: 320 - seed: 2024 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:------:|:--------:|:---------:|:------:| | No log | 0 | 0 | 0.6981 | 0.3337 | 0.5001 | 0.6162 | 0.5001 | | 0.0294 | 0.1420 | 1000 | 0.0398 | 0.9947 | 0.9947 | 0.9947 | 0.9947 | | 0.0076 | 0.2841 | 2000 | 0.0211 | 0.9968 | 0.9968 | 0.9968 | 0.9968 | | 0.0053 | 0.4261 | 3000 | 0.0188 | 0.9973 | 0.9973 | 0.9973 | 0.9973 | | 0.0056 | 0.5681 | 4000 | 0.0166 | 0.9976 | 0.9976 | 0.9976 | 0.9976 | | 0.0044 | 0.7101 | 5000 | 0.0172 | 0.9975 | 0.9975 | 0.9975 | 0.9975 | | 0.0009 | 0.8522 | 6000 | 0.0171 | 0.9975 | 0.9975 | 0.9975 | 0.9975 | | 0.0052 | 0.9942 | 7000 | 0.0171 | 0.9975 | 0.9975 | 0.9975 | 0.9975 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3