upernet-convnext-base-AIData
This model is a fine-tuned version of openmmlab/upernet-convnext-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0005
- Mean Iou: 0.8401
- Mean Accuracy: 0.8941
- Overall Accuracy: 0.9999
- Per Category Iou: [0.9999000813657232, 0.6803966437833715]
- Per Category Accuracy: [0.9999571923167959, 0.7883340698188246]
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
---|---|---|---|---|---|---|---|---|
0.0005 | 11.7647 | 200 | 0.0005 | 0.8172 | 0.8557 | 0.9999 | [0.9998894717752407, 0.6346078044934963] | [0.9999673278406743, 0.7114449845338047] |
0.0005 | 23.5294 | 400 | 0.0005 | 0.8456 | 0.9072 | 0.9999 | [0.9999018691950949, 0.691297824456114] | [0.9999519456926707, 0.8144056562085726] |
0.0005 | 35.2941 | 600 | 0.0005 | 0.8413 | 0.8950 | 0.9999 | [0.999900915960996, 0.6827033218785796] | [0.9999575500411682, 0.7901016349977905] |
0.0005 | 47.0588 | 800 | 0.0005 | 0.8401 | 0.8941 | 0.9999 | [0.9999000813657232, 0.6803966437833715] | [0.9999571923167959, 0.7883340698188246] |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 102
Model tree for wangzfsh/upernet-convnext-base-AIData-198
Base model
openmmlab/upernet-convnext-base