Edit model card

upernet-convnext-base-AIData

This model is a fine-tuned version of openmmlab/upernet-convnext-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0005
  • Mean Iou: 0.8401
  • Mean Accuracy: 0.8941
  • Overall Accuracy: 0.9999
  • Per Category Iou: [0.9999000813657232, 0.6803966437833715]
  • Per Category Accuracy: [0.9999571923167959, 0.7883340698188246]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.0005 11.7647 200 0.0005 0.8172 0.8557 0.9999 [0.9998894717752407, 0.6346078044934963] [0.9999673278406743, 0.7114449845338047]
0.0005 23.5294 400 0.0005 0.8456 0.9072 0.9999 [0.9999018691950949, 0.691297824456114] [0.9999519456926707, 0.8144056562085726]
0.0005 35.2941 600 0.0005 0.8413 0.8950 0.9999 [0.999900915960996, 0.6827033218785796] [0.9999575500411682, 0.7901016349977905]
0.0005 47.0588 800 0.0005 0.8401 0.8941 0.9999 [0.9999000813657232, 0.6803966437833715] [0.9999571923167959, 0.7883340698188246]

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
102
Safetensors
Model size
122M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for wangzfsh/upernet-convnext-base-AIData-198

Finetuned
(5)
this model