warisqr7's picture
Update hyperparams.yaml
7dd97d3 verified
# ############################################################################
# Model: WAV2VEC XLSR model for Accent Recognition (English)
# see paper: https://arxiv.org/abs/2305.18283
# ############################################################################
# Hparams NEEDED
HPARAMS_NEEDED: ["encoder_dim", "out_n_neurons", "label_encoder", "softmax"]
# Modules Needed
MODULES_NEEDED: ["wav2vec2", "avg_pool", "output_mlp"]
# Feature parameters
# wav2vec2_hub: facebook/wav2vec2-base
wav2vec2_hub: "facebook/wav2vec2-large-xlsr-53"
# Pretrain folder (HuggingFace)
pretrained_path: Jzuluaga/accent-id-commonaccent_xlsr-en-english
# URL for the biggest Fairseq english wav2vec2 model.
# parameters
encoder_dim: 1024
out_n_neurons: 16
wav2vec2: !new:speechbrain.lobes.models.huggingface_transformers.Wav2Vec2
source: !ref <wav2vec2_hub>
output_norm: True
freeze: True
save_path: wav2vec2_checkpoints
avg_pool: !new:speechbrain.nnet.pooling.StatisticsPooling
return_std: False
output_mlp: !new:speechbrain.nnet.linear.Linear
input_size: !ref <encoder_dim>
n_neurons: !ref <out_n_neurons>
bias: False
model: !new:torch.nn.ModuleList
- [!ref <output_mlp>]
modules:
wav2vec2: !ref <wav2vec2>
output_mlp: !ref <output_mlp>
avg_pool: !ref <avg_pool>
softmax: !new:speechbrain.nnet.activations.Softmax
label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
wav2vec2: !ref <wav2vec2>
model: !ref <model>
label_encoder: !ref <label_encoder>
paths:
wav2vec2: !ref <pretrained_path>/wav2vec2.ckpt
model: !ref <pretrained_path>/model.ckpt
label_encoder: !ref <pretrained_path>/label_encoder.txt