Create README.md
Browse files
README.md
CHANGED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# to run
|
2 |
+
simply install chocolatey run this on your cmd:
|
3 |
+
@"%SystemRoot%\System32\WindowsPowerShell\v1.0\powershell.exe" -NoProfile -InputFormat None -ExecutionPolicy Bypass -Command "[System.Net.ServicePointManager]::SecurityProtocol = 3072; iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))" && SET "PATH=%PATH%;%ALLUSERSPROFILE%\chocolatey\bin"
|
4 |
+
|
5 |
+
after that install ffmpeg in your device using choco install by running this on cmd after:
|
6 |
+
choco install ffmpeg
|
7 |
+
|
8 |
+
install dependencies in python IDE using:
|
9 |
+
pip install --upgrade pip
|
10 |
+
pip install --upgrade git+https://github.com/huggingface/transformers.git accelerate datasets[audio]
|
11 |
+
|
12 |
+
then lastly to inference the model:
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
16 |
+
|
17 |
+
|
18 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
19 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
20 |
+
|
21 |
+
model_id = "washeed/audio-transcribe"
|
22 |
+
|
23 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
24 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
25 |
+
)
|
26 |
+
model.to(device)
|
27 |
+
|
28 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
29 |
+
|
30 |
+
pipe = pipeline(
|
31 |
+
"automatic-speech-recognition",
|
32 |
+
model=model,
|
33 |
+
tokenizer=processor.tokenizer,
|
34 |
+
feature_extractor=processor.feature_extractor,
|
35 |
+
max_new_tokens=128,
|
36 |
+
chunk_length_s=30,
|
37 |
+
batch_size=16,
|
38 |
+
return_timestamps=True,
|
39 |
+
torch_dtype=torch_dtype,
|
40 |
+
device=device,
|
41 |
+
)
|
42 |
+
|
43 |
+
result = pipe("audio.mp3")
|
44 |
+
print(result["text"])
|
45 |
+
|