waterabbit114 commited on
Commit
f729712
1 Parent(s): b5c2b31

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,341 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: is completely right on this. carnildo’s comment is just a waste of space.
12
+ 176.12.107.140
13
+ - text: '" please do not vandalize pages, as you did with this edit to bella swan.
14
+ if you continue to do so, you will be blocked from editing. (talk) "'
15
+ - text: ipv6 mirc doesn't natively supports ipv6 protocols. it could be enabled
16
+ by adding a external dll plugin who will enable a special protocol for dns and
17
+ connecting to ipv6 servers.
18
+ - text: '" link thanks for fixing that disambiguation link on usher''s album )
19
+ flash; "'
20
+ - text: '|b-class-1= yes |b-class-2= yes |b-class-3= yes |b-class-4= yes |b-class-5=
21
+ yes'
22
+ pipeline_tag: text-classification
23
+ inference: true
24
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
25
+ ---
26
+
27
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
28
+
29
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
30
+
31
+ The model has been trained using an efficient few-shot learning technique that involves:
32
+
33
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
34
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
35
+
36
+ ## Model Details
37
+
38
+ ### Model Description
39
+ - **Model Type:** SetFit
40
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
41
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
42
+ - **Maximum Sequence Length:** 512 tokens
43
+ - **Number of Classes:** 2 classes
44
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
45
+ <!-- - **Language:** Unknown -->
46
+ <!-- - **License:** Unknown -->
47
+
48
+ ### Model Sources
49
+
50
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
51
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
52
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
53
+
54
+ ### Model Labels
55
+ | Label | Examples |
56
+ |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
57
+ | 0 | <ul><li>', metal unless it was 70s oldskool'</li><li>"do whichever you think would be best then: if you rename the account, just let me know, and i'll go over there to recreate it; but if you'd prefer to rename the account, recreate it, and send me the password which i can then change, that's fine with me."</li><li>'" no, it was a far-too-much-of-an-in-joke on the fact that principle→principal is usually one of the first things the fa regulars jump on (along with the dreaded spaced em dash)\xa0–\xa0scent "'</li></ul> |
58
+ | 1 | <ul><li>"oh, no! i just read the vile diatribe you left for me on my user page. no, you get no respect you ass little shit fuck you, you're an unhappy little dick puller!"</li><li>'fuck you youfuckingidiot'</li><li>"hey , you are a chicken shit coward i told you that everytime you had one of your administrator buddies block me, i would quickly be back on with a new ip address editing your vandalism of this article. i meant it!!! why don't you stop masturbating to wikipedia and get a real life? i told you that you don't know who you're fuck with!!!"</li></ul> |
59
+
60
+ ## Uses
61
+
62
+ ### Direct Use for Inference
63
+
64
+ First install the SetFit library:
65
+
66
+ ```bash
67
+ pip install setfit
68
+ ```
69
+
70
+ Then you can load this model and run inference.
71
+
72
+ ```python
73
+ from setfit import SetFitModel
74
+
75
+ # Download from the 🤗 Hub
76
+ model = SetFitModel.from_pretrained("waterabbit114/my-setfit-classifier_obscene")
77
+ # Run inference
78
+ preds = model("\" link thanks for fixing that disambiguation link on usher's album ) flash; \"")
79
+ ```
80
+
81
+ <!--
82
+ ### Downstream Use
83
+
84
+ *List how someone could finetune this model on their own dataset.*
85
+ -->
86
+
87
+ <!--
88
+ ### Out-of-Scope Use
89
+
90
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
91
+ -->
92
+
93
+ <!--
94
+ ## Bias, Risks and Limitations
95
+
96
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
97
+ -->
98
+
99
+ <!--
100
+ ### Recommendations
101
+
102
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
103
+ -->
104
+
105
+ ## Training Details
106
+
107
+ ### Training Set Metrics
108
+ | Training set | Min | Median | Max |
109
+ |:-------------|:----|:-------|:----|
110
+ | Word count | 3 | 57.2 | 426 |
111
+
112
+ | Label | Training Sample Count |
113
+ |:------|:----------------------|
114
+ | 0 | 10 |
115
+ | 1 | 10 |
116
+
117
+ ### Training Hyperparameters
118
+ - batch_size: (1, 1)
119
+ - num_epochs: (10, 10)
120
+ - max_steps: -1
121
+ - sampling_strategy: oversampling
122
+ - num_iterations: 20
123
+ - body_learning_rate: (2e-05, 2e-05)
124
+ - head_learning_rate: 2e-05
125
+ - loss: CosineSimilarityLoss
126
+ - distance_metric: cosine_distance
127
+ - margin: 0.25
128
+ - end_to_end: False
129
+ - use_amp: False
130
+ - warmup_proportion: 0.1
131
+ - seed: 42
132
+ - eval_max_steps: -1
133
+ - load_best_model_at_end: False
134
+
135
+ ### Training Results
136
+ | Epoch | Step | Training Loss | Validation Loss |
137
+ |:------:|:----:|:-------------:|:---------------:|
138
+ | 0.0013 | 1 | 0.1758 | - |
139
+ | 0.0625 | 50 | 0.0036 | - |
140
+ | 0.125 | 100 | 0.1383 | - |
141
+ | 0.1875 | 150 | 0.0148 | - |
142
+ | 0.25 | 200 | 0.0216 | - |
143
+ | 0.3125 | 250 | 0.0001 | - |
144
+ | 0.375 | 300 | 0.0021 | - |
145
+ | 0.4375 | 350 | 0.001 | - |
146
+ | 0.5 | 400 | 0.0015 | - |
147
+ | 0.5625 | 450 | 0.0004 | - |
148
+ | 0.625 | 500 | 0.0 | - |
149
+ | 0.6875 | 550 | 0.0003 | - |
150
+ | 0.75 | 600 | 0.0 | - |
151
+ | 0.8125 | 650 | 0.0 | - |
152
+ | 0.875 | 700 | 0.0 | - |
153
+ | 0.9375 | 750 | 0.0001 | - |
154
+ | 1.0 | 800 | 0.0 | - |
155
+ | 1.0625 | 850 | 0.0 | - |
156
+ | 1.125 | 900 | 0.0002 | - |
157
+ | 1.1875 | 950 | 0.0 | - |
158
+ | 1.25 | 1000 | 0.0008 | - |
159
+ | 1.3125 | 1050 | 0.0002 | - |
160
+ | 1.375 | 1100 | 0.0 | - |
161
+ | 1.4375 | 1150 | 0.0 | - |
162
+ | 1.5 | 1200 | 0.0 | - |
163
+ | 1.5625 | 1250 | 0.0001 | - |
164
+ | 1.625 | 1300 | 0.0 | - |
165
+ | 1.6875 | 1350 | 0.0 | - |
166
+ | 1.75 | 1400 | 0.0 | - |
167
+ | 1.8125 | 1450 | 0.0 | - |
168
+ | 1.875 | 1500 | 0.0 | - |
169
+ | 1.9375 | 1550 | 0.0 | - |
170
+ | 2.0 | 1600 | 0.0 | - |
171
+ | 2.0625 | 1650 | 0.0001 | - |
172
+ | 2.125 | 1700 | 0.0001 | - |
173
+ | 2.1875 | 1750 | 0.0 | - |
174
+ | 2.25 | 1800 | 0.0001 | - |
175
+ | 2.3125 | 1850 | 0.0001 | - |
176
+ | 2.375 | 1900 | 0.0002 | - |
177
+ | 2.4375 | 1950 | 0.0 | - |
178
+ | 2.5 | 2000 | 0.0001 | - |
179
+ | 2.5625 | 2050 | 0.0001 | - |
180
+ | 2.625 | 2100 | 0.0 | - |
181
+ | 2.6875 | 2150 | 0.0001 | - |
182
+ | 2.75 | 2200 | 0.0003 | - |
183
+ | 2.8125 | 2250 | 0.0001 | - |
184
+ | 2.875 | 2300 | 0.0 | - |
185
+ | 2.9375 | 2350 | 0.0 | - |
186
+ | 3.0 | 2400 | 0.0003 | - |
187
+ | 3.0625 | 2450 | 0.0 | - |
188
+ | 3.125 | 2500 | 0.0 | - |
189
+ | 3.1875 | 2550 | 0.0 | - |
190
+ | 3.25 | 2600 | 0.0 | - |
191
+ | 3.3125 | 2650 | 0.0 | - |
192
+ | 3.375 | 2700 | 0.0001 | - |
193
+ | 3.4375 | 2750 | 0.0 | - |
194
+ | 3.5 | 2800 | 0.0 | - |
195
+ | 3.5625 | 2850 | 0.0 | - |
196
+ | 3.625 | 2900 | 0.0001 | - |
197
+ | 3.6875 | 2950 | 0.0 | - |
198
+ | 3.75 | 3000 | 0.0001 | - |
199
+ | 3.8125 | 3050 | 0.0 | - |
200
+ | 3.875 | 3100 | 0.0 | - |
201
+ | 3.9375 | 3150 | 0.0 | - |
202
+ | 4.0 | 3200 | 0.0 | - |
203
+ | 4.0625 | 3250 | 0.0 | - |
204
+ | 4.125 | 3300 | 0.0 | - |
205
+ | 4.1875 | 3350 | 0.0 | - |
206
+ | 4.25 | 3400 | 0.0 | - |
207
+ | 4.3125 | 3450 | 0.0 | - |
208
+ | 4.375 | 3500 | 0.0001 | - |
209
+ | 4.4375 | 3550 | 0.0001 | - |
210
+ | 4.5 | 3600 | 0.0 | - |
211
+ | 4.5625 | 3650 | 0.0 | - |
212
+ | 4.625 | 3700 | 0.0 | - |
213
+ | 4.6875 | 3750 | 0.0 | - |
214
+ | 4.75 | 3800 | 0.0001 | - |
215
+ | 4.8125 | 3850 | 0.0 | - |
216
+ | 4.875 | 3900 | 0.0 | - |
217
+ | 4.9375 | 3950 | 0.0 | - |
218
+ | 5.0 | 4000 | 0.0 | - |
219
+ | 5.0625 | 4050 | 0.0 | - |
220
+ | 5.125 | 4100 | 0.0 | - |
221
+ | 5.1875 | 4150 | 0.0 | - |
222
+ | 5.25 | 4200 | 0.0 | - |
223
+ | 5.3125 | 4250 | 0.0 | - |
224
+ | 5.375 | 4300 | 0.0001 | - |
225
+ | 5.4375 | 4350 | 0.0 | - |
226
+ | 5.5 | 4400 | 0.0 | - |
227
+ | 5.5625 | 4450 | 0.0 | - |
228
+ | 5.625 | 4500 | 0.0 | - |
229
+ | 5.6875 | 4550 | 0.0 | - |
230
+ | 5.75 | 4600 | 0.0 | - |
231
+ | 5.8125 | 4650 | 0.0 | - |
232
+ | 5.875 | 4700 | 0.0 | - |
233
+ | 5.9375 | 4750 | 0.0 | - |
234
+ | 6.0 | 4800 | 0.0 | - |
235
+ | 6.0625 | 4850 | 0.0 | - |
236
+ | 6.125 | 4900 | 0.0 | - |
237
+ | 6.1875 | 4950 | 0.0 | - |
238
+ | 6.25 | 5000 | 0.0 | - |
239
+ | 6.3125 | 5050 | 0.0 | - |
240
+ | 6.375 | 5100 | 0.0 | - |
241
+ | 6.4375 | 5150 | 0.0001 | - |
242
+ | 6.5 | 5200 | 0.0 | - |
243
+ | 6.5625 | 5250 | 0.0 | - |
244
+ | 6.625 | 5300 | 0.0 | - |
245
+ | 6.6875 | 5350 | 0.0 | - |
246
+ | 6.75 | 5400 | 0.0 | - |
247
+ | 6.8125 | 5450 | 0.0 | - |
248
+ | 6.875 | 5500 | 0.0 | - |
249
+ | 6.9375 | 5550 | 0.0 | - |
250
+ | 7.0 | 5600 | 0.0001 | - |
251
+ | 7.0625 | 5650 | 0.0 | - |
252
+ | 7.125 | 5700 | 0.0 | - |
253
+ | 7.1875 | 5750 | 0.0 | - |
254
+ | 7.25 | 5800 | 0.0 | - |
255
+ | 7.3125 | 5850 | 0.0 | - |
256
+ | 7.375 | 5900 | 0.0001 | - |
257
+ | 7.4375 | 5950 | 0.0 | - |
258
+ | 7.5 | 6000 | 0.0 | - |
259
+ | 7.5625 | 6050 | 0.0 | - |
260
+ | 7.625 | 6100 | 0.0 | - |
261
+ | 7.6875 | 6150 | 0.0 | - |
262
+ | 7.75 | 6200 | 0.0 | - |
263
+ | 7.8125 | 6250 | 0.0 | - |
264
+ | 7.875 | 6300 | 0.0 | - |
265
+ | 7.9375 | 6350 | 0.0 | - |
266
+ | 8.0 | 6400 | 0.0 | - |
267
+ | 8.0625 | 6450 | 0.0 | - |
268
+ | 8.125 | 6500 | 0.0 | - |
269
+ | 8.1875 | 6550 | 0.0 | - |
270
+ | 8.25 | 6600 | 0.0 | - |
271
+ | 8.3125 | 6650 | 0.0 | - |
272
+ | 8.375 | 6700 | 0.0 | - |
273
+ | 8.4375 | 6750 | 0.0 | - |
274
+ | 8.5 | 6800 | 0.0 | - |
275
+ | 8.5625 | 6850 | 0.0 | - |
276
+ | 8.625 | 6900 | 0.0 | - |
277
+ | 8.6875 | 6950 | 0.0 | - |
278
+ | 8.75 | 7000 | 0.0 | - |
279
+ | 8.8125 | 7050 | 0.0 | - |
280
+ | 8.875 | 7100 | 0.0 | - |
281
+ | 8.9375 | 7150 | 0.0 | - |
282
+ | 9.0 | 7200 | 0.0 | - |
283
+ | 9.0625 | 7250 | 0.0 | - |
284
+ | 9.125 | 7300 | 0.0 | - |
285
+ | 9.1875 | 7350 | 0.0 | - |
286
+ | 9.25 | 7400 | 0.0 | - |
287
+ | 9.3125 | 7450 | 0.0 | - |
288
+ | 9.375 | 7500 | 0.0 | - |
289
+ | 9.4375 | 7550 | 0.0 | - |
290
+ | 9.5 | 7600 | 0.0 | - |
291
+ | 9.5625 | 7650 | 0.0 | - |
292
+ | 9.625 | 7700 | 0.0 | - |
293
+ | 9.6875 | 7750 | 0.0 | - |
294
+ | 9.75 | 7800 | 0.0 | - |
295
+ | 9.8125 | 7850 | 0.0 | - |
296
+ | 9.875 | 7900 | 0.0 | - |
297
+ | 9.9375 | 7950 | 0.0 | - |
298
+ | 10.0 | 8000 | 0.0 | - |
299
+
300
+ ### Framework Versions
301
+ - Python: 3.11.7
302
+ - SetFit: 1.0.3
303
+ - Sentence Transformers: 2.2.2
304
+ - Transformers: 4.35.2
305
+ - PyTorch: 2.1.1+cu121
306
+ - Datasets: 2.14.5
307
+ - Tokenizers: 0.15.1
308
+
309
+ ## Citation
310
+
311
+ ### BibTeX
312
+ ```bibtex
313
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
314
+ doi = {10.48550/ARXIV.2209.11055},
315
+ url = {https://arxiv.org/abs/2209.11055},
316
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
317
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
318
+ title = {Efficient Few-Shot Learning Without Prompts},
319
+ publisher = {arXiv},
320
+ year = {2022},
321
+ copyright = {Creative Commons Attribution 4.0 International}
322
+ }
323
+ ```
324
+
325
+ <!--
326
+ ## Glossary
327
+
328
+ *Clearly define terms in order to be accessible across audiences.*
329
+ -->
330
+
331
+ <!--
332
+ ## Model Card Authors
333
+
334
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
335
+ -->
336
+
337
+ <!--
338
+ ## Model Card Contact
339
+
340
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
341
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc7d3bcf73a0cc086054ce090dc517e7f2c03749e8a9fca14747ab1f10f4a882
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d40561e7ed52d58cacafb1b57327c9a6c1454c18c29c2a134ab510fd88e79be5
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff