File size: 2,190 Bytes
412d639 93df403 412d639 93df403 412d639 93df403 412d639 93df403 412d639 3e021b9 412d639 29ee4be 412d639 93df403 3e021b9 93df403 412d639 93df403 412d639 93df403 412d639 93df403 412d639 93df403 412d639 93df403 412d639 93df403 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
license: apache-2.0
library_name: transformers
pipeline_tag: automatic-speech-recognition
tags:
- asr
- Pytorch
- pruned
- audio
- automatic-speech-recognition
language:
- en
- zh
- de
- es
- ru
- ko
- fr
- ja
- pt
- tr
- pl
- ca
- nl
- ar
- sv
- it
- id
- hi
- fi
- vi
- he
- uk
- el
- ms
- cs
- ro
- da
- hu
- ta
- 'no'
- th
- ur
- hr
- bg
- lt
- la
- mi
- ml
- cy
- sk
- te
- fa
- lv
- bn
- sr
- az
- sl
- kn
- et
- mk
- br
- eu
- is
- hy
- ne
- mn
- bs
- kk
- sq
- sw
- gl
- mr
- pa
- si
- km
- sn
- yo
- so
- af
- oc
- ka
- be
- tg
- sd
- gu
- am
- yi
- lo
- uz
- fo
- ht
- ps
- tk
- nn
- mt
- sa
- lb
- my
- bo
- tl
- mg
- as
- tt
- haw
- ln
- ha
- ba
- jw
- su
base_model:
- openai/whisper-large-v3-turbo
---
# Whisper-large-v3-turbo-no-numbers
## Model info
This is a version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) model without number tokens (token ids corresponding to numbers are excluded).
NO fine-tuning was used.
Phrases with spoken numbers will be transcribed with numbers as words. It can be useful for TTS data preparation.
**Example**: Instead of **"25"** this model will transcribe phrase as **"twenty five"**.
## Usage
`transformers` version `4.45.2`
Model can be used as an original whisper:
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> import torchaudio
>>> # load audio
>>> wav, sr = torchaudio.load("audio.wav")
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("waveletdeboshir/whisper-large-v3-turbo-no-numbers")
>>> model = WhisperForConditionalGeneration.from_pretrained("waveletdeboshir/whisper-large-v3-turbo-no-numbers")
>>> input_features = processor(wav[0], sampling_rate=sr, return_tensors="pt").input_features
>>> # generate token ids
>>> predicted_ids = model.generate(input_features)
>>> # decode token ids to text
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False)
['<|startoftranscript|><|en|><|transcribe|><|notimestamps|> Twenty seven years. <|endoftext|>']
```
The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`. |