waveydaveygravy
commited on
Commit
•
212be9d
1
Parent(s):
018348e
Upload 2 files
Browse files- multicontrolnetPV.py +187 -0
- multicontrolnetfull.py +975 -0
multicontrolnetPV.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
from ...models.controlnet import ControlNetModel, ControlNetOutput
|
8 |
+
from ...models.modeling_utils import ModelMixin
|
9 |
+
from ...utils import logging
|
10 |
+
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
class MultiControlNetModel(ModelMixin):
|
16 |
+
r"""
|
17 |
+
Multiple `ControlNetModel` wrapper class for Multi-ControlNet
|
18 |
+
|
19 |
+
This module is a wrapper for multiple instances of the `ControlNetModel`. The `forward()` API is designed to be
|
20 |
+
compatible with `ControlNetModel`.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
controlnets (`List[ControlNetModel]`):
|
24 |
+
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
25 |
+
`ControlNetModel` as a list.
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(self, controlnets: Union[List[ControlNetModel], Tuple[ControlNetModel]]):
|
29 |
+
super().__init__()
|
30 |
+
self.nets = nn.ModuleList(controlnets)
|
31 |
+
|
32 |
+
def forward(
|
33 |
+
self,
|
34 |
+
sample: torch.FloatTensor,
|
35 |
+
timestep: Union[torch.Tensor, float, int],
|
36 |
+
encoder_hidden_states: torch.Tensor,
|
37 |
+
controlnet_cond: List[torch.tensor],
|
38 |
+
conditioning_scale: List[float],
|
39 |
+
class_labels: Optional[torch.Tensor] = None,
|
40 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
41 |
+
attention_mask: Optional[torch.Tensor] = None,
|
42 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
43 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
44 |
+
guess_mode: bool = False,
|
45 |
+
return_dict: bool = True,
|
46 |
+
) -> Union[ControlNetOutput, Tuple]:
|
47 |
+
for i, (image, scale, controlnet) in enumerate(zip(controlnet_cond, conditioning_scale, self.nets)):
|
48 |
+
down_samples, mid_sample = controlnet(
|
49 |
+
sample=sample,
|
50 |
+
timestep=timestep,
|
51 |
+
encoder_hidden_states=encoder_hidden_states,
|
52 |
+
controlnet_cond=image,
|
53 |
+
conditioning_scale=scale,
|
54 |
+
class_labels=class_labels,
|
55 |
+
timestep_cond=timestep_cond,
|
56 |
+
attention_mask=attention_mask,
|
57 |
+
added_cond_kwargs=added_cond_kwargs,
|
58 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
59 |
+
guess_mode=guess_mode,
|
60 |
+
return_dict=return_dict,
|
61 |
+
)
|
62 |
+
|
63 |
+
# merge samples
|
64 |
+
if i == 0:
|
65 |
+
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample
|
66 |
+
else:
|
67 |
+
down_block_res_samples = [
|
68 |
+
samples_prev + samples_curr
|
69 |
+
for samples_prev, samples_curr in zip(down_block_res_samples, down_samples)
|
70 |
+
]
|
71 |
+
mid_block_res_sample += mid_sample
|
72 |
+
|
73 |
+
return down_block_res_samples, mid_block_res_sample
|
74 |
+
|
75 |
+
def save_pretrained(
|
76 |
+
self,
|
77 |
+
save_directory: Union[str, os.PathLike],
|
78 |
+
is_main_process: bool = True,
|
79 |
+
save_function: Callable = None,
|
80 |
+
safe_serialization: bool = True,
|
81 |
+
variant: Optional[str] = None,
|
82 |
+
):
|
83 |
+
"""
|
84 |
+
Save a model and its configuration file to a directory, so that it can be re-loaded using the
|
85 |
+
`[`~pipelines.controlnet.MultiControlNetModel.from_pretrained`]` class method.
|
86 |
+
|
87 |
+
Arguments:
|
88 |
+
save_directory (`str` or `os.PathLike`):
|
89 |
+
Directory to which to save. Will be created if it doesn't exist.
|
90 |
+
is_main_process (`bool`, *optional*, defaults to `True`):
|
91 |
+
Whether the process calling this is the main process or not. Useful when in distributed training like
|
92 |
+
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
|
93 |
+
the main process to avoid race conditions.
|
94 |
+
save_function (`Callable`):
|
95 |
+
The function to use to save the state dictionary. Useful on distributed training like TPUs when one
|
96 |
+
need to replace `torch.save` by another method. Can be configured with the environment variable
|
97 |
+
`DIFFUSERS_SAVE_MODE`.
|
98 |
+
safe_serialization (`bool`, *optional*, defaults to `True`):
|
99 |
+
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
100 |
+
variant (`str`, *optional*):
|
101 |
+
If specified, weights are saved in the format pytorch_model.<variant>.bin.
|
102 |
+
"""
|
103 |
+
idx = 0
|
104 |
+
model_path_to_save = save_directory
|
105 |
+
for controlnet in self.nets:
|
106 |
+
controlnet.save_pretrained(
|
107 |
+
model_path_to_save,
|
108 |
+
is_main_process=is_main_process,
|
109 |
+
save_function=save_function,
|
110 |
+
safe_serialization=safe_serialization,
|
111 |
+
variant=variant,
|
112 |
+
)
|
113 |
+
|
114 |
+
idx += 1
|
115 |
+
model_path_to_save = model_path_to_save + f"_{idx}"
|
116 |
+
|
117 |
+
@classmethod
|
118 |
+
def from_pretrained(cls, pretrained_model_path: Optional[Union[str, os.PathLike]], **kwargs):
|
119 |
+
r"""
|
120 |
+
Instantiate a pretrained MultiControlNet model from multiple pre-trained controlnet models.
|
121 |
+
|
122 |
+
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
|
123 |
+
the model, you should first set it back in training mode with `model.train()`.
|
124 |
+
|
125 |
+
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
|
126 |
+
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
|
127 |
+
task.
|
128 |
+
|
129 |
+
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
|
130 |
+
weights are discarded.
|
131 |
+
|
132 |
+
Parameters:
|
133 |
+
pretrained_model_path (`os.PathLike`):
|
134 |
+
A path to a *directory* containing model weights saved using
|
135 |
+
[`~diffusers.pipelines.controlnet.MultiControlNetModel.save_pretrained`], e.g.,
|
136 |
+
`./my_model_directory/controlnet`.
|
137 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
138 |
+
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
|
139 |
+
will be automatically derived from the model's weights.
|
140 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
141 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
142 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
143 |
+
A map that specifies where each submodule should go. It doesn't need to be refined to each
|
144 |
+
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
|
145 |
+
same device.
|
146 |
+
|
147 |
+
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
|
148 |
+
more information about each option see [designing a device
|
149 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
150 |
+
max_memory (`Dict`, *optional*):
|
151 |
+
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
|
152 |
+
GPU and the available CPU RAM if unset.
|
153 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
154 |
+
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
|
155 |
+
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
|
156 |
+
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
|
157 |
+
setting this argument to `True` will raise an error.
|
158 |
+
variant (`str`, *optional*):
|
159 |
+
If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
|
160 |
+
ignored when using `from_flax`.
|
161 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
162 |
+
If set to `None`, the `safetensors` weights will be downloaded if they're available **and** if the
|
163 |
+
`safetensors` library is installed. If set to `True`, the model will be forcibly loaded from
|
164 |
+
`safetensors` weights. If set to `False`, loading will *not* use `safetensors`.
|
165 |
+
"""
|
166 |
+
idx = 0
|
167 |
+
controlnets = []
|
168 |
+
|
169 |
+
# load controlnet and append to list until no controlnet directory exists anymore
|
170 |
+
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
|
171 |
+
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
|
172 |
+
model_path_to_load = pretrained_model_path
|
173 |
+
while os.path.isdir(model_path_to_load):
|
174 |
+
controlnet = ControlNetModel.from_pretrained(model_path_to_load, **kwargs)
|
175 |
+
controlnets.append(controlnet)
|
176 |
+
|
177 |
+
idx += 1
|
178 |
+
model_path_to_load = pretrained_model_path + f"_{idx}"
|
179 |
+
|
180 |
+
logger.info(f"{len(controlnets)} controlnets loaded from {pretrained_model_path}.")
|
181 |
+
|
182 |
+
if len(controlnets) == 0:
|
183 |
+
raise ValueError(
|
184 |
+
f"No ControlNets found under {os.path.dirname(pretrained_model_path)}. Expected at least {pretrained_model_path + '_0'}."
|
185 |
+
)
|
186 |
+
|
187 |
+
return cls(controlnets)
|
multicontrolnetfull.py
ADDED
@@ -0,0 +1,975 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
Skip to content
|
3 |
+
|
4 |
+
Pricing
|
5 |
+
|
6 |
+
Sign in
|
7 |
+
Sign up
|
8 |
+
huggingface /
|
9 |
+
diffusers
|
10 |
+
Public
|
11 |
+
|
12 |
+
Code
|
13 |
+
Issues 275
|
14 |
+
Pull requests 91
|
15 |
+
Discussions
|
16 |
+
Actions
|
17 |
+
Projects
|
18 |
+
Security
|
19 |
+
|
20 |
+
Insights
|
21 |
+
|
22 |
+
Comparing changes
|
23 |
+
Choose two branches to see what’s changed or to start a new pull request. If you need to, you can also
|
24 |
+
or learn more about diff comparisons.
|
25 |
+
...
|
26 |
+
Able to merge. These branches can be automatically merged.
|
27 |
+
|
28 |
+
6 commits
|
29 |
+
1 file changed
|
30 |
+
|
31 |
+
1 contributor
|
32 |
+
|
33 |
+
Commits on Mar 5, 2023
|
34 |
+
|
35 |
+
copied from controlnet pipeline
|
36 |
+
|
37 |
+
@takuma104
|
38 |
+
takuma104 committed Mar 5, 2023
|
39 |
+
|
40 |
+
tweak namespace, add simple demo
|
41 |
+
@takuma104
|
42 |
+
takuma104 committed Mar 5, 2023
|
43 |
+
|
44 |
+
add ControlNetProcessor, canny x2 test
|
45 |
+
@takuma104
|
46 |
+
takuma104 committed Mar 5, 2023
|
47 |
+
|
48 |
+
canny+openpose demo
|
49 |
+
@takuma104
|
50 |
+
takuma104 committed Mar 5, 2023
|
51 |
+
|
52 |
+
update demo
|
53 |
+
@takuma104
|
54 |
+
takuma104 committed Mar 5, 2023
|
55 |
+
|
56 |
+
variable name
|
57 |
+
@takuma104
|
58 |
+
takuma104 committed Mar 5, 2023
|
59 |
+
|
60 |
+
Showing
|
61 |
+
with 913 additions and 0 deletions.
|
62 |
+
913 changes: 913 additions & 0 deletions 913
|
63 |
+
examples/community/stable_diffusion_multi_controlnet.py
|
64 |
+
@@ -0,0 +1,913 @@
|
65 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
66 |
+
#
|
67 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
68 |
+
# you may not use this file except in compliance with the License.
|
69 |
+
# You may obtain a copy of the License at
|
70 |
+
#
|
71 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
72 |
+
#
|
73 |
+
# Unless required by applicable law or agreed to in writing, software
|
74 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
75 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
76 |
+
# See the License for the specific language governing permissions and
|
77 |
+
# limitations under the License.
|
78 |
+
|
79 |
+
|
80 |
+
import inspect
|
81 |
+
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
|
82 |
+
|
83 |
+
import numpy as np
|
84 |
+
import PIL.Image
|
85 |
+
import torch
|
86 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
87 |
+
|
88 |
+
from diffusers import AutoencoderKL, ControlNetModel, UNet2DConditionModel
|
89 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
90 |
+
from diffusers.utils import (
|
91 |
+
PIL_INTERPOLATION,
|
92 |
+
is_accelerate_available,
|
93 |
+
is_accelerate_version,
|
94 |
+
logging,
|
95 |
+
randn_tensor,
|
96 |
+
replace_example_docstring,
|
97 |
+
)
|
98 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
99 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
100 |
+
from diffusers.models.controlnet import ControlNetOutput
|
101 |
+
|
102 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
103 |
+
|
104 |
+
|
105 |
+
class ControlNetProcessor(object):
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
controlnet: ControlNetModel,
|
109 |
+
image: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]],
|
110 |
+
conditioning_scale: float = 1.0,
|
111 |
+
):
|
112 |
+
self.controlnet = controlnet
|
113 |
+
self.image = image
|
114 |
+
self.conditioning_scale = conditioning_scale
|
115 |
+
|
116 |
+
def _default_height_width(self, height, width, image):
|
117 |
+
if isinstance(image, list):
|
118 |
+
image = image[0]
|
119 |
+
|
120 |
+
if height is None:
|
121 |
+
if isinstance(image, PIL.Image.Image):
|
122 |
+
height = image.height
|
123 |
+
elif isinstance(image, torch.Tensor):
|
124 |
+
height = image.shape[3]
|
125 |
+
|
126 |
+
height = (height // 8) * 8 # round down to nearest multiple of 8
|
127 |
+
|
128 |
+
if width is None:
|
129 |
+
if isinstance(image, PIL.Image.Image):
|
130 |
+
width = image.width
|
131 |
+
elif isinstance(image, torch.Tensor):
|
132 |
+
width = image.shape[2]
|
133 |
+
|
134 |
+
width = (width // 8) * 8 # round down to nearest multiple of 8
|
135 |
+
|
136 |
+
return height, width
|
137 |
+
|
138 |
+
def default_height_width(self, height, width):
|
139 |
+
return self._default_height_width(height, width, self.image)
|
140 |
+
|
141 |
+
def _prepare_image(self, image, width, height, batch_size, num_images_per_prompt, device, dtype):
|
142 |
+
if not isinstance(image, torch.Tensor):
|
143 |
+
if isinstance(image, PIL.Image.Image):
|
144 |
+
image = [image]
|
145 |
+
|
146 |
+
if isinstance(image[0], PIL.Image.Image):
|
147 |
+
image = [
|
148 |
+
np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image
|
149 |
+
]
|
150 |
+
image = np.concatenate(image, axis=0)
|
151 |
+
image = np.array(image).astype(np.float32) / 255.0
|
152 |
+
image = image.transpose(0, 3, 1, 2)
|
153 |
+
image = torch.from_numpy(image)
|
154 |
+
elif isinstance(image[0], torch.Tensor):
|
155 |
+
image = torch.cat(image, dim=0)
|
156 |
+
|
157 |
+
image_batch_size = image.shape[0]
|
158 |
+
|
159 |
+
if image_batch_size == 1:
|
160 |
+
repeat_by = batch_size
|
161 |
+
else:
|
162 |
+
# image batch size is the same as prompt batch size
|
163 |
+
repeat_by = num_images_per_prompt
|
164 |
+
|
165 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
166 |
+
|
167 |
+
image = image.to(device=device, dtype=dtype)
|
168 |
+
|
169 |
+
return image
|
170 |
+
|
171 |
+
def _check_inputs(self, image, prompt, prompt_embeds):
|
172 |
+
image_is_pil = isinstance(image, PIL.Image.Image)
|
173 |
+
image_is_tensor = isinstance(image, torch.Tensor)
|
174 |
+
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
175 |
+
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
176 |
+
|
177 |
+
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
|
178 |
+
raise TypeError(
|
179 |
+
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
|
180 |
+
)
|
181 |
+
|
182 |
+
if image_is_pil:
|
183 |
+
image_batch_size = 1
|
184 |
+
elif image_is_tensor:
|
185 |
+
image_batch_size = image.shape[0]
|
186 |
+
elif image_is_pil_list:
|
187 |
+
image_batch_size = len(image)
|
188 |
+
elif image_is_tensor_list:
|
189 |
+
image_batch_size = len(image)
|
190 |
+
|
191 |
+
if prompt is not None and isinstance(prompt, str):
|
192 |
+
prompt_batch_size = 1
|
193 |
+
elif prompt is not None and isinstance(prompt, list):
|
194 |
+
prompt_batch_size = len(prompt)
|
195 |
+
elif prompt_embeds is not None:
|
196 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
197 |
+
|
198 |
+
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
199 |
+
raise ValueError(
|
200 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
201 |
+
)
|
202 |
+
|
203 |
+
def check_inputs(self, prompt, prompt_embeds):
|
204 |
+
self._check_inputs(self.image, prompt, prompt_embeds)
|
205 |
+
|
206 |
+
def prepare_image(self, width, height, batch_size, num_images_per_prompt, device, do_classifier_free_guidance):
|
207 |
+
self.image = self._prepare_image(
|
208 |
+
self.image, width, height, batch_size, num_images_per_prompt, device, self.controlnet.dtype
|
209 |
+
)
|
210 |
+
if do_classifier_free_guidance:
|
211 |
+
self.image = torch.cat([self.image] * 2)
|
212 |
+
|
213 |
+
def __call__(
|
214 |
+
self,
|
215 |
+
sample: torch.FloatTensor,
|
216 |
+
timestep: Union[torch.Tensor, float, int],
|
217 |
+
encoder_hidden_states: torch.Tensor,
|
218 |
+
class_labels: Optional[torch.Tensor] = None,
|
219 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
220 |
+
attention_mask: Optional[torch.Tensor] = None,
|
221 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
222 |
+
return_dict: bool = True,
|
223 |
+
) -> Tuple:
|
224 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
225 |
+
sample=sample,
|
226 |
+
controlnet_cond=self.image,
|
227 |
+
timestep=timestep,
|
228 |
+
encoder_hidden_states=encoder_hidden_states,
|
229 |
+
class_labels=class_labels,
|
230 |
+
timestep_cond=timestep_cond,
|
231 |
+
attention_mask=attention_mask,
|
232 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
233 |
+
return_dict=False,
|
234 |
+
)
|
235 |
+
down_block_res_samples = [
|
236 |
+
down_block_res_sample * self.conditioning_scale for down_block_res_sample in down_block_res_samples
|
237 |
+
]
|
238 |
+
mid_block_res_sample *= self.conditioning_scale
|
239 |
+
return (down_block_res_samples, mid_block_res_sample)
|
240 |
+
|
241 |
+
|
242 |
+
EXAMPLE_DOC_STRING = """
|
243 |
+
Examples:
|
244 |
+
```py
|
245 |
+
>>> # !pip install opencv-python transformers accelerate
|
246 |
+
>>> from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
247 |
+
>>> from diffusers.utils import load_image
|
248 |
+
>>> import numpy as np
|
249 |
+
>>> import torch
|
250 |
+
>>> import cv2
|
251 |
+
>>> from PIL import Image
|
252 |
+
>>> # download an image
|
253 |
+
>>> image = load_image(
|
254 |
+
... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
|
255 |
+
... )
|
256 |
+
>>> image = np.array(image)
|
257 |
+
>>> # get canny image
|
258 |
+
>>> image = cv2.Canny(image, 100, 200)
|
259 |
+
>>> image = image[:, :, None]
|
260 |
+
>>> image = np.concatenate([image, image, image], axis=2)
|
261 |
+
>>> canny_image = Image.fromarray(image)
|
262 |
+
>>> # load control net and stable diffusion v1-5
|
263 |
+
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
|
264 |
+
>>> pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
265 |
+
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
266 |
+
... )
|
267 |
+
>>> # speed up diffusion process with faster scheduler and memory optimization
|
268 |
+
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
269 |
+
>>> # remove following line if xformers is not installed
|
270 |
+
>>> pipe.enable_xformers_memory_efficient_attention()
|
271 |
+
>>> pipe.enable_model_cpu_offload()
|
272 |
+
>>> # generate image
|
273 |
+
>>> generator = torch.manual_seed(0)
|
274 |
+
>>> image = pipe(
|
275 |
+
... "futuristic-looking woman", num_inference_steps=20, generator=generator, image=canny_image
|
276 |
+
... ).images[0]
|
277 |
+
```
|
278 |
+
"""
|
279 |
+
|
280 |
+
|
281 |
+
class StableDiffusionMultiControlNetPipeline(DiffusionPipeline):
|
282 |
+
r"""
|
283 |
+
Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
|
284 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
285 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
286 |
+
Args:
|
287 |
+
vae ([`AutoencoderKL`]):
|
288 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
289 |
+
text_encoder ([`CLIPTextModel`]):
|
290 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
291 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
292 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
293 |
+
tokenizer (`CLIPTokenizer`):
|
294 |
+
Tokenizer of class
|
295 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
296 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
297 |
+
scheduler ([`SchedulerMixin`]):
|
298 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
299 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
300 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
301 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
302 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
303 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
304 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
305 |
+
"""
|
306 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
307 |
+
|
308 |
+
def __init__(
|
309 |
+
self,
|
310 |
+
vae: AutoencoderKL,
|
311 |
+
text_encoder: CLIPTextModel,
|
312 |
+
tokenizer: CLIPTokenizer,
|
313 |
+
unet: UNet2DConditionModel,
|
314 |
+
scheduler: KarrasDiffusionSchedulers,
|
315 |
+
safety_checker: StableDiffusionSafetyChecker,
|
316 |
+
feature_extractor: CLIPFeatureExtractor,
|
317 |
+
requires_safety_checker: bool = True,
|
318 |
+
):
|
319 |
+
super().__init__()
|
320 |
+
|
321 |
+
if safety_checker is None and requires_safety_checker:
|
322 |
+
logger.warning(
|
323 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
324 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
325 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
326 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
327 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
328 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
329 |
+
)
|
330 |
+
|
331 |
+
if safety_checker is not None and feature_extractor is None:
|
332 |
+
raise ValueError(
|
333 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
334 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
335 |
+
)
|
336 |
+
|
337 |
+
self.register_modules(
|
338 |
+
vae=vae,
|
339 |
+
text_encoder=text_encoder,
|
340 |
+
tokenizer=tokenizer,
|
341 |
+
unet=unet,
|
342 |
+
scheduler=scheduler,
|
343 |
+
safety_checker=safety_checker,
|
344 |
+
feature_extractor=feature_extractor,
|
345 |
+
)
|
346 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
347 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
348 |
+
|
349 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
350 |
+
def enable_vae_slicing(self):
|
351 |
+
r"""
|
352 |
+
Enable sliced VAE decoding.
|
353 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
354 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
355 |
+
"""
|
356 |
+
self.vae.enable_slicing()
|
357 |
+
|
358 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
359 |
+
def disable_vae_slicing(self):
|
360 |
+
r"""
|
361 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
362 |
+
computing decoding in one step.
|
363 |
+
"""
|
364 |
+
self.vae.disable_slicing()
|
365 |
+
|
366 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
367 |
+
r"""
|
368 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
369 |
+
text_encoder, vae, controlnet, and safety checker have their state dicts saved to CPU and then are moved to a
|
370 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
371 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
372 |
+
`enable_model_cpu_offload`, but performance is lower.
|
373 |
+
"""
|
374 |
+
if is_accelerate_available():
|
375 |
+
from accelerate import cpu_offload
|
376 |
+
else:
|
377 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
378 |
+
|
379 |
+
device = torch.device(f"cuda:{gpu_id}")
|
380 |
+
|
381 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
382 |
+
cpu_offload(cpu_offloaded_model, device)
|
383 |
+
|
384 |
+
if self.safety_checker is not None:
|
385 |
+
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
|
386 |
+
|
387 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
388 |
+
r"""
|
389 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
390 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
391 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
392 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
393 |
+
"""
|
394 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
395 |
+
from accelerate import cpu_offload_with_hook
|
396 |
+
else:
|
397 |
+
raise ImportError("`enable_model_offload` requires `accelerate v0.17.0` or higher.")
|
398 |
+
|
399 |
+
device = torch.device(f"cuda:{gpu_id}")
|
400 |
+
|
401 |
+
hook = None
|
402 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
403 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
404 |
+
|
405 |
+
if self.safety_checker is not None:
|
406 |
+
# the safety checker can offload the vae again
|
407 |
+
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
408 |
+
|
409 |
+
# control net hook has be manually offloaded as it alternates with unet
|
410 |
+
# cpu_offload_with_hook(self.controlnet, device)
|
411 |
+
|
412 |
+
# We'll offload the last model manually.
|
413 |
+
self.final_offload_hook = hook
|
414 |
+
|
415 |
+
@property
|
416 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
417 |
+
def _execution_device(self):
|
418 |
+
r"""
|
419 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
420 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
421 |
+
hooks.
|
422 |
+
"""
|
423 |
+
if not hasattr(self.unet, "_hf_hook"):
|
424 |
+
return self.device
|
425 |
+
for module in self.unet.modules():
|
426 |
+
if (
|
427 |
+
hasattr(module, "_hf_hook")
|
428 |
+
and hasattr(module._hf_hook, "execution_device")
|
429 |
+
and module._hf_hook.execution_device is not None
|
430 |
+
):
|
431 |
+
return torch.device(module._hf_hook.execution_device)
|
432 |
+
return self.device
|
433 |
+
|
434 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
435 |
+
def _encode_prompt(
|
436 |
+
self,
|
437 |
+
prompt,
|
438 |
+
device,
|
439 |
+
num_images_per_prompt,
|
440 |
+
do_classifier_free_guidance,
|
441 |
+
negative_prompt=None,
|
442 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
443 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
444 |
+
):
|
445 |
+
r"""
|
446 |
+
Encodes the prompt into text encoder hidden states.
|
447 |
+
Args:
|
448 |
+
prompt (`str` or `List[str]`, *optional*):
|
449 |
+
prompt to be encoded
|
450 |
+
device: (`torch.device`):
|
451 |
+
torch device
|
452 |
+
num_images_per_prompt (`int`):
|
453 |
+
number of images that should be generated per prompt
|
454 |
+
do_classifier_free_guidance (`bool`):
|
455 |
+
whether to use classifier free guidance or not
|
456 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
457 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
458 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
459 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
460 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
461 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
462 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
463 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
464 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
465 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
466 |
+
argument.
|
467 |
+
"""
|
468 |
+
if prompt is not None and isinstance(prompt, str):
|
469 |
+
batch_size = 1
|
470 |
+
elif prompt is not None and isinstance(prompt, list):
|
471 |
+
batch_size = len(prompt)
|
472 |
+
else:
|
473 |
+
batch_size = prompt_embeds.shape[0]
|
474 |
+
|
475 |
+
if prompt_embeds is None:
|
476 |
+
text_inputs = self.tokenizer(
|
477 |
+
prompt,
|
478 |
+
padding="max_length",
|
479 |
+
max_length=self.tokenizer.model_max_length,
|
480 |
+
truncation=True,
|
481 |
+
return_tensors="pt",
|
482 |
+
)
|
483 |
+
text_input_ids = text_inputs.input_ids
|
484 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
485 |
+
|
486 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
487 |
+
text_input_ids, untruncated_ids
|
488 |
+
):
|
489 |
+
removed_text = self.tokenizer.batch_decode(
|
490 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
491 |
+
)
|
492 |
+
logger.warning(
|
493 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
494 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
495 |
+
)
|
496 |
+
|
497 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
498 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
499 |
+
else:
|
500 |
+
attention_mask = None
|
501 |
+
|
502 |
+
prompt_embeds = self.text_encoder(
|
503 |
+
text_input_ids.to(device),
|
504 |
+
attention_mask=attention_mask,
|
505 |
+
)
|
506 |
+
prompt_embeds = prompt_embeds[0]
|
507 |
+
|
508 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
509 |
+
|
510 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
511 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
512 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
513 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
514 |
+
|
515 |
+
# get unconditional embeddings for classifier free guidance
|
516 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
517 |
+
uncond_tokens: List[str]
|
518 |
+
if negative_prompt is None:
|
519 |
+
uncond_tokens = [""] * batch_size
|
520 |
+
elif type(prompt) is not type(negative_prompt):
|
521 |
+
raise TypeError(
|
522 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
523 |
+
f" {type(prompt)}."
|
524 |
+
)
|
525 |
+
elif isinstance(negative_prompt, str):
|
526 |
+
uncond_tokens = [negative_prompt]
|
527 |
+
elif batch_size != len(negative_prompt):
|
528 |
+
raise ValueError(
|
529 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
530 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
531 |
+
" the batch size of `prompt`."
|
532 |
+
)
|
533 |
+
else:
|
534 |
+
uncond_tokens = negative_prompt
|
535 |
+
|
536 |
+
max_length = prompt_embeds.shape[1]
|
537 |
+
uncond_input = self.tokenizer(
|
538 |
+
uncond_tokens,
|
539 |
+
padding="max_length",
|
540 |
+
max_length=max_length,
|
541 |
+
truncation=True,
|
542 |
+
return_tensors="pt",
|
543 |
+
)
|
544 |
+
|
545 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
546 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
547 |
+
else:
|
548 |
+
attention_mask = None
|
549 |
+
|
550 |
+
negative_prompt_embeds = self.text_encoder(
|
551 |
+
uncond_input.input_ids.to(device),
|
552 |
+
attention_mask=attention_mask,
|
553 |
+
)
|
554 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
555 |
+
|
556 |
+
if do_classifier_free_guidance:
|
557 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
558 |
+
seq_len = negative_prompt_embeds.shape[1]
|
559 |
+
|
560 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
561 |
+
|
562 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
563 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
564 |
+
|
565 |
+
# For classifier free guidance, we need to do two forward passes.
|
566 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
567 |
+
# to avoid doing two forward passes
|
568 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
569 |
+
|
570 |
+
return prompt_embeds
|
571 |
+
|
572 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
573 |
+
def run_safety_checker(self, image, device, dtype):
|
574 |
+
if self.safety_checker is not None:
|
575 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
576 |
+
image, has_nsfw_concept = self.safety_checker(
|
577 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
578 |
+
)
|
579 |
+
else:
|
580 |
+
has_nsfw_concept = None
|
581 |
+
return image, has_nsfw_concept
|
582 |
+
|
583 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
584 |
+
def decode_latents(self, latents):
|
585 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
586 |
+
image = self.vae.decode(latents).sample
|
587 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
588 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
589 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
590 |
+
return image
|
591 |
+
|
592 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
593 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
594 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
595 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
596 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
597 |
+
# and should be between [0, 1]
|
598 |
+
|
599 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
600 |
+
extra_step_kwargs = {}
|
601 |
+
if accepts_eta:
|
602 |
+
extra_step_kwargs["eta"] = eta
|
603 |
+
|
604 |
+
# check if the scheduler accepts generator
|
605 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
606 |
+
if accepts_generator:
|
607 |
+
extra_step_kwargs["generator"] = generator
|
608 |
+
return extra_step_kwargs
|
609 |
+
|
610 |
+
def check_inputs(
|
611 |
+
self,
|
612 |
+
prompt,
|
613 |
+
height,
|
614 |
+
width,
|
615 |
+
callback_steps,
|
616 |
+
negative_prompt=None,
|
617 |
+
prompt_embeds=None,
|
618 |
+
negative_prompt_embeds=None,
|
619 |
+
):
|
620 |
+
if height % 8 != 0 or width % 8 != 0:
|
621 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
622 |
+
|
623 |
+
if (callback_steps is None) or (
|
624 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
625 |
+
):
|
626 |
+
raise ValueError(
|
627 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
628 |
+
f" {type(callback_steps)}."
|
629 |
+
)
|
630 |
+
|
631 |
+
if prompt is not None and prompt_embeds is not None:
|
632 |
+
raise ValueError(
|
633 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
634 |
+
" only forward one of the two."
|
635 |
+
)
|
636 |
+
elif prompt is None and prompt_embeds is None:
|
637 |
+
raise ValueError(
|
638 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
639 |
+
)
|
640 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
641 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
642 |
+
|
643 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
644 |
+
raise ValueError(
|
645 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
646 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
647 |
+
)
|
648 |
+
|
649 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
650 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
651 |
+
raise ValueError(
|
652 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
653 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
654 |
+
f" {negative_prompt_embeds.shape}."
|
655 |
+
)
|
656 |
+
|
657 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
658 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
659 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
660 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
661 |
+
raise ValueError(
|
662 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
663 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
664 |
+
)
|
665 |
+
|
666 |
+
if latents is None:
|
667 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
668 |
+
else:
|
669 |
+
latents = latents.to(device)
|
670 |
+
|
671 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
672 |
+
latents = latents * self.scheduler.init_noise_sigma
|
673 |
+
return latents
|
674 |
+
|
675 |
+
@torch.no_grad()
|
676 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
677 |
+
def __call__(
|
678 |
+
self,
|
679 |
+
processors: List[ControlNetProcessor],
|
680 |
+
prompt: Union[str, List[str]] = None,
|
681 |
+
height: Optional[int] = None,
|
682 |
+
width: Optional[int] = None,
|
683 |
+
num_inference_steps: int = 50,
|
684 |
+
guidance_scale: float = 7.5,
|
685 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
686 |
+
num_images_per_prompt: Optional[int] = 1,
|
687 |
+
eta: float = 0.0,
|
688 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
689 |
+
latents: Optional[torch.FloatTensor] = None,
|
690 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
691 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
692 |
+
output_type: Optional[str] = "pil",
|
693 |
+
return_dict: bool = True,
|
694 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
695 |
+
callback_steps: int = 1,
|
696 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
697 |
+
):
|
698 |
+
r"""
|
699 |
+
Function invoked when calling the pipeline for generation.
|
700 |
+
Args:
|
701 |
+
prompt (`str` or `List[str]`, *optional*):
|
702 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
703 |
+
instead.
|
704 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
705 |
+
The height in pixels of the generated image.
|
706 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
707 |
+
The width in pixels of the generated image.
|
708 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
709 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
710 |
+
expense of slower inference.
|
711 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
712 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
713 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
714 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
715 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
716 |
+
usually at the expense of lower image quality.
|
717 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
718 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
719 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
720 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
721 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
722 |
+
The number of images to generate per prompt.
|
723 |
+
eta (`float`, *optional*, defaults to 0.0):
|
724 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
725 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
726 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
727 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
728 |
+
to make generation deterministic.
|
729 |
+
latents (`torch.FloatTensor`, *optional*):
|
730 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
731 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
732 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
733 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
734 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
735 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
736 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
737 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
738 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
739 |
+
argument.
|
740 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
741 |
+
The output format of the generate image. Choose between
|
742 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
743 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
744 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
745 |
+
plain tuple.
|
746 |
+
callback (`Callable`, *optional*):
|
747 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
748 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
749 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
750 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
751 |
+
called at every step.
|
752 |
+
cross_attention_kwargs (`dict`, *optional*):
|
753 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
|
754 |
+
`self.processor` in
|
755 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
756 |
+
Examples:
|
757 |
+
Returns:
|
758 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
759 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
760 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
761 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
762 |
+
(nsfw) content, according to the `safety_checker`.
|
763 |
+
"""
|
764 |
+
# 0. Default height and width to unet
|
765 |
+
height, width = processors[0].default_height_width(height, width)
|
766 |
+
|
767 |
+
# 1. Check inputs. Raise error if not correct
|
768 |
+
self.check_inputs(
|
769 |
+
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
770 |
+
)
|
771 |
+
for processor in processors:
|
772 |
+
processor.check_inputs(prompt, prompt_embeds)
|
773 |
+
|
774 |
+
# 2. Define call parameters
|
775 |
+
if prompt is not None and isinstance(prompt, str):
|
776 |
+
batch_size = 1
|
777 |
+
elif prompt is not None and isinstance(prompt, list):
|
778 |
+
batch_size = len(prompt)
|
779 |
+
else:
|
780 |
+
batch_size = prompt_embeds.shape[0]
|
781 |
+
|
782 |
+
device = self._execution_device
|
783 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
784 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
785 |
+
# corresponds to doing no classifier free guidance.
|
786 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
787 |
+
|
788 |
+
# 3. Encode input prompt
|
789 |
+
prompt_embeds = self._encode_prompt(
|
790 |
+
prompt,
|
791 |
+
device,
|
792 |
+
num_images_per_prompt,
|
793 |
+
do_classifier_free_guidance,
|
794 |
+
negative_prompt,
|
795 |
+
prompt_embeds=prompt_embeds,
|
796 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
797 |
+
)
|
798 |
+
|
799 |
+
# 4. Prepare image
|
800 |
+
for processor in processors:
|
801 |
+
processor.prepare_image(
|
802 |
+
width=width,
|
803 |
+
height=height,
|
804 |
+
batch_size=batch_size * num_images_per_prompt,
|
805 |
+
num_images_per_prompt=num_images_per_prompt,
|
806 |
+
device=device,
|
807 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
808 |
+
)
|
809 |
+
|
810 |
+
# 5. Prepare timesteps
|
811 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
812 |
+
timesteps = self.scheduler.timesteps
|
813 |
+
|
814 |
+
# 6. Prepare latent variables
|
815 |
+
num_channels_latents = self.unet.in_channels
|
816 |
+
latents = self.prepare_latents(
|
817 |
+
batch_size * num_images_per_prompt,
|
818 |
+
num_channels_latents,
|
819 |
+
height,
|
820 |
+
width,
|
821 |
+
prompt_embeds.dtype,
|
822 |
+
device,
|
823 |
+
generator,
|
824 |
+
latents,
|
825 |
+
)
|
826 |
+
|
827 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
828 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
829 |
+
|
830 |
+
# 8. Denoising loop
|
831 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
832 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
833 |
+
for i, t in enumerate(timesteps):
|
834 |
+
# expand the latents if we are doing classifier free guidance
|
835 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
836 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
837 |
+
|
838 |
+
# controlnet inference
|
839 |
+
for i, processor in enumerate(processors):
|
840 |
+
down_samples, mid_sample = processor(
|
841 |
+
latent_model_input,
|
842 |
+
t,
|
843 |
+
encoder_hidden_states=prompt_embeds,
|
844 |
+
return_dict=False,
|
845 |
+
)
|
846 |
+
if i == 0:
|
847 |
+
down_block_res_samples, mid_block_res_sample = down_samples, mid_sample
|
848 |
+
else:
|
849 |
+
down_block_res_samples = [
|
850 |
+
d_prev + d_curr for d_prev, d_curr in zip(down_block_res_samples, down_samples)
|
851 |
+
]
|
852 |
+
mid_block_res_sample = mid_block_res_sample + mid_sample
|
853 |
+
|
854 |
+
# predict the noise residual
|
855 |
+
noise_pred = self.unet(
|
856 |
+
latent_model_input,
|
857 |
+
t,
|
858 |
+
encoder_hidden_states=prompt_embeds,
|
859 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
860 |
+
down_block_additional_residuals=down_block_res_samples,
|
861 |
+
mid_block_additional_residual=mid_block_res_sample,
|
862 |
+
).sample
|
863 |
+
|
864 |
+
# perform guidance
|
865 |
+
if do_classifier_free_guidance:
|
866 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
867 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
868 |
+
|
869 |
+
# compute the previous noisy sample x_t -> x_t-1
|
870 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
871 |
+
|
872 |
+
# call the callback, if provided
|
873 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
874 |
+
progress_bar.update()
|
875 |
+
if callback is not None and i % callback_steps == 0:
|
876 |
+
callback(i, t, latents)
|
877 |
+
|
878 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
879 |
+
# manually for max memory savings
|
880 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
881 |
+
self.unet.to("cpu")
|
882 |
+
torch.cuda.empty_cache()
|
883 |
+
|
884 |
+
if output_type == "latent":
|
885 |
+
image = latents
|
886 |
+
has_nsfw_concept = None
|
887 |
+
elif output_type == "pil":
|
888 |
+
# 8. Post-processing
|
889 |
+
image = self.decode_latents(latents)
|
890 |
+
|
891 |
+
# 9. Run safety checker
|
892 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
893 |
+
|
894 |
+
# 10. Convert to PIL
|
895 |
+
image = self.numpy_to_pil(image)
|
896 |
+
else:
|
897 |
+
# 8. Post-processing
|
898 |
+
image = self.decode_latents(latents)
|
899 |
+
|
900 |
+
# 9. Run safety checker
|
901 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
902 |
+
|
903 |
+
# Offload last model to CPU
|
904 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
905 |
+
self.final_offload_hook.offload()
|
906 |
+
|
907 |
+
if not return_dict:
|
908 |
+
return (image, has_nsfw_concept)
|
909 |
+
|
910 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
911 |
+
|
912 |
+
|
913 |
+
# demo & simple test
|
914 |
+
def main():
|
915 |
+
from diffusers.utils import load_image
|
916 |
+
|
917 |
+
pipe = StableDiffusionMultiControlNetPipeline.from_pretrained(
|
918 |
+
"runwayml/stable-diffusion-v1-5", safety_checker=None, torch_dtype=torch.float16
|
919 |
+
).to("cuda")
|
920 |
+
pipe.enable_xformers_memory_efficient_attention()
|
921 |
+
|
922 |
+
controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16).to(
|
923 |
+
"cuda"
|
924 |
+
)
|
925 |
+
controlnet_pose = ControlNetModel.from_pretrained(
|
926 |
+
"lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16
|
927 |
+
).to("cuda")
|
928 |
+
|
929 |
+
canny_left = load_image("https://huggingface.co/takuma104/controlnet_dev/resolve/main/vermeer_left.png")
|
930 |
+
canny_right = load_image("https://huggingface.co/takuma104/controlnet_dev/resolve/main/vermeer_right.png")
|
931 |
+
pose_right = load_image("https://huggingface.co/takuma104/controlnet_dev/resolve/main/pose_right.png")
|
932 |
+
|
933 |
+
image = pipe(
|
934 |
+
prompt="best quality, extremely detailed",
|
935 |
+
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
|
936 |
+
processors=[
|
937 |
+
ControlNetProcessor(controlnet_canny, canny_left),
|
938 |
+
ControlNetProcessor(controlnet_canny, canny_right),
|
939 |
+
],
|
940 |
+
generator=torch.Generator(device="cpu").manual_seed(0),
|
941 |
+
num_inference_steps=30,
|
942 |
+
width=512,
|
943 |
+
height=512,
|
944 |
+
).images[0]
|
945 |
+
image.save("/tmp/canny_left_right.png")
|
946 |
+
|
947 |
+
image = pipe(
|
948 |
+
prompt="best quality, extremely detailed",
|
949 |
+
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
|
950 |
+
processors=[
|
951 |
+
ControlNetProcessor(controlnet_canny, canny_left),
|
952 |
+
ControlNetProcessor(controlnet_pose, pose_right),
|
953 |
+
],
|
954 |
+
generator=torch.Generator(device="cpu").manual_seed(0),
|
955 |
+
num_inference_steps=30,
|
956 |
+
width=512,
|
957 |
+
height=512,
|
958 |
+
).images[0]
|
959 |
+
image.save("/tmp/canny_left_pose_right.png")
|
960 |
+
|
961 |
+
|
962 |
+
if __name__ == "__main__":
|
963 |
+
main()
|
964 |
+
Footer
|
965 |
+
© 2024 GitHub, Inc.
|
966 |
+
Footer navigation
|
967 |
+
|
968 |
+
Terms
|
969 |
+
Privacy
|
970 |
+
Security
|
971 |
+
Status
|
972 |
+
Docs
|
973 |
+
Contact
|
974 |
+
|
975 |
+
update demo · huggingface/diffusers@f718c4e · GitHub
|