waveydaveygravy
commited on
Commit
β’
b629419
1
Parent(s):
1dda0a5
Upload vid2cn2vid.ipynb
Browse files- vid2cn2vid.ipynb +726 -0
vid2cn2vid.ipynb
ADDED
@@ -0,0 +1,726 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": null,
|
20 |
+
"metadata": {
|
21 |
+
"id": "asNLOn0uIC5o"
|
22 |
+
},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"### based on https://github.com/patrickvonplaten/controlnet_aux\n",
|
26 |
+
"### which is derived from https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to the π€ Hub.\n",
|
27 |
+
"\n",
|
28 |
+
"#All credit & copyright goes to https://github.com/lllyasviel .\n",
|
29 |
+
"#some of the models are large comment them out to save space if not needed"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": null,
|
35 |
+
"metadata": {
|
36 |
+
"id": "qbM01EucvW58"
|
37 |
+
},
|
38 |
+
"outputs": [],
|
39 |
+
"source": [
|
40 |
+
"!pip install controlnet-aux==0.0.7\n",
|
41 |
+
"!pip install -U openmim\n",
|
42 |
+
"!pip install cog\n",
|
43 |
+
"!pip install mediapipe\n",
|
44 |
+
"!mim install mmengine\n",
|
45 |
+
"!mim install \"mmcv>=2.0.1\"\n",
|
46 |
+
"!mim install \"mmdet>=3.1.0\"\n",
|
47 |
+
"!mim install \"mmpose>=1.1.0\"\n",
|
48 |
+
"!pip install moviepy\n",
|
49 |
+
"!pip install argparse\n",
|
50 |
+
"\n",
|
51 |
+
"import os\n",
|
52 |
+
"\n",
|
53 |
+
"# Create the directory /content/test\n",
|
54 |
+
"os.makedirs(\"/content/test\", exist_ok=True)\n",
|
55 |
+
"\n",
|
56 |
+
"# Create the directory /content/frames\n",
|
57 |
+
"os.makedirs(\"/content/frames\", exist_ok=True)\n"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"source": [
|
63 |
+
"from google.colab import files\n",
|
64 |
+
"uploaded = files.upload()"
|
65 |
+
],
|
66 |
+
"metadata": {
|
67 |
+
"id": "fy-P7QkwCMBd"
|
68 |
+
},
|
69 |
+
"execution_count": null,
|
70 |
+
"outputs": []
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "code",
|
74 |
+
"source": [
|
75 |
+
"#@title break video down into frames\n",
|
76 |
+
"import cv2\n",
|
77 |
+
"\n",
|
78 |
+
"# Open the video file\n",
|
79 |
+
"cap = cv2.VideoCapture('/content/a.mp4')\n",
|
80 |
+
"\n",
|
81 |
+
"i = 0\n",
|
82 |
+
"while(cap.isOpened()):\n",
|
83 |
+
" ret, frame = cap.read()\n",
|
84 |
+
"\n",
|
85 |
+
" if ret == False:\n",
|
86 |
+
" break\n",
|
87 |
+
"\n",
|
88 |
+
" # Save each frame of the video\n",
|
89 |
+
" cv2.imwrite('/content/frames/frame_' + str(i) + '.jpg', frame)\n",
|
90 |
+
"\n",
|
91 |
+
" i += 1\n",
|
92 |
+
"\n",
|
93 |
+
"cap.release()\n",
|
94 |
+
"cv2.destroyAllWindows()"
|
95 |
+
],
|
96 |
+
"metadata": {
|
97 |
+
"id": "Kw0hIeYnvjLV"
|
98 |
+
},
|
99 |
+
"execution_count": null,
|
100 |
+
"outputs": []
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"cell_type": "code",
|
104 |
+
"source": [
|
105 |
+
"###COMMENT OUT PROCESSORS YOU DONT WANT TO USE ALSO COMMENT OUT ONES WITH LARGE MODELS IF YOU WANT TO SAVE SPACE\n",
|
106 |
+
"### based on https://github.com/patrickvonplaten/controlnet_aux\n",
|
107 |
+
"### which is derived from https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to the π€ Hub.\n",
|
108 |
+
"#All credit & copyright goes to https://github.com/lllyasviel .\n",
|
109 |
+
"#some of the models are large comment them out to save space if not needed\n",
|
110 |
+
"\n",
|
111 |
+
"import torch\n",
|
112 |
+
"import os\n",
|
113 |
+
"import shutil\n",
|
114 |
+
"from PIL import Image\n",
|
115 |
+
"from tqdm import tqdm\n",
|
116 |
+
"from controlnet_aux import (CannyDetector, ContentShuffleDetector, HEDdetector,\n",
|
117 |
+
" LeresDetector, LineartAnimeDetector,\n",
|
118 |
+
" LineartDetector, MediapipeFaceDetector,\n",
|
119 |
+
" MidasDetector, MLSDdetector, NormalBaeDetector,\n",
|
120 |
+
" OpenposeDetector, PidiNetDetector, SamDetector,\n",
|
121 |
+
" ZoeDetector, DWposeDetector)\n",
|
122 |
+
"\n",
|
123 |
+
"# Create the directory /content/test\n",
|
124 |
+
"os.makedirs(\"/content/test\", exist_ok=True)\n",
|
125 |
+
"\n",
|
126 |
+
"INPUT_DIR = \"/content/frames\" # replace with your input directory\n",
|
127 |
+
"OUTPUT_DIR = \"/content/test\" # replace with your output directory\n",
|
128 |
+
"\n",
|
129 |
+
"# Check if CUDA is available and set the device accordingly\n",
|
130 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
131 |
+
"\n",
|
132 |
+
"\n",
|
133 |
+
"def output(filename, img):\n",
|
134 |
+
" img.save(os.path.join(OUTPUT_DIR, filename))\n",
|
135 |
+
"\n",
|
136 |
+
"def process_image(processor, img):\n",
|
137 |
+
" return processor(img)\n",
|
138 |
+
"\n",
|
139 |
+
"def load_images():\n",
|
140 |
+
" if os.path.exists(OUTPUT_DIR):\n",
|
141 |
+
" shutil.rmtree(OUTPUT_DIR)\n",
|
142 |
+
" os.mkdir(OUTPUT_DIR)\n",
|
143 |
+
" images = []\n",
|
144 |
+
" filenames = []\n",
|
145 |
+
" for filename in os.listdir(INPUT_DIR):\n",
|
146 |
+
" if filename.endswith(\".png\") or filename.endswith(\".jpg\"):\n",
|
147 |
+
" img_path = os.path.join(INPUT_DIR, filename)\n",
|
148 |
+
" img = Image.open(img_path).convert(\"RGB\").resize((512, 512))\n",
|
149 |
+
" images.append(img)\n",
|
150 |
+
" filenames.append(filename)\n",
|
151 |
+
" return images, filenames\n",
|
152 |
+
"\n",
|
153 |
+
"def process_images(processor):\n",
|
154 |
+
" images, filenames = load_images()\n",
|
155 |
+
" for img, filename in tqdm(zip(images, filenames), total=len(images), desc=\"Processing images\"):\n",
|
156 |
+
" output_img = process_image(processor, img)\n",
|
157 |
+
" output(filename, output_img)\n",
|
158 |
+
"\n",
|
159 |
+
"# Initialize the detectors\n",
|
160 |
+
"\n",
|
161 |
+
"canny = CannyDetector()\n",
|
162 |
+
"hed = HEDdetector.from_pretrained(\"lllyasviel/Annotators\")\n",
|
163 |
+
"shuffle = ContentShuffleDetector()\n",
|
164 |
+
"leres = LeresDetector.from_pretrained(\"lllyasviel/Annotators\")\n",
|
165 |
+
"lineart_anime = LineartAnimeDetector.from_pretrained(\"lllyasviel/Annotators\")\n",
|
166 |
+
"lineart = LineartDetector.from_pretrained(\"lllyasviel/Annotators\")\n",
|
167 |
+
"mediapipe_face = MediapipeFaceDetector()\n",
|
168 |
+
"midas = MidasDetector.from_pretrained(\"lllyasviel/Annotators\")\n",
|
169 |
+
"mlsd = MLSDdetector.from_pretrained(\"lllyasviel/Annotators\")\n",
|
170 |
+
"normal_bae = NormalBaeDetector.from_pretrained(\"lllyasviel/Annotators\")\n",
|
171 |
+
"openpose = OpenposeDetector.from_pretrained(\"lllyasviel/Annotators\")\n",
|
172 |
+
"pidi_net = PidiNetDetector.from_pretrained(\"lllyasviel/Annotators\")\n",
|
173 |
+
"sam = SamDetector.from_pretrained(\"ybelkada/segment-anything\", subfolder=\"checkpoints\")\n",
|
174 |
+
"#zoe = ZoeDetector.from_pretrained(\"lllyasviel/Annotators\")\n",
|
175 |
+
"#dwpose = DWposeDetector()\n",
|
176 |
+
"\n",
|
177 |
+
"\n",
|
178 |
+
"\n",
|
179 |
+
"# Run the image processing\n",
|
180 |
+
"# Uncomment the line for the detector you want to use\n",
|
181 |
+
"#process_images(canny)\n",
|
182 |
+
"#process_images(hed)\n"
|
183 |
+
],
|
184 |
+
"metadata": {
|
185 |
+
"colab": {
|
186 |
+
"base_uri": "https://localhost:8080/"
|
187 |
+
},
|
188 |
+
"outputId": "46d65432-5661-4377-ab34-64e5767f6e91",
|
189 |
+
"id": "pXgCvJvi45mo"
|
190 |
+
},
|
191 |
+
"execution_count": null,
|
192 |
+
"outputs": [
|
193 |
+
{
|
194 |
+
"output_type": "stream",
|
195 |
+
"name": "stderr",
|
196 |
+
"text": [
|
197 |
+
"/usr/local/lib/python3.10/dist-packages/timm/models/_factory.py:117: UserWarning: Mapping deprecated model name vit_base_resnet50_384 to current vit_base_r50_s16_384.orig_in21k_ft_in1k.\n",
|
198 |
+
" model = create_fn(\n"
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"output_type": "stream",
|
203 |
+
"name": "stdout",
|
204 |
+
"text": [
|
205 |
+
"Loading base model ()...Done.\n",
|
206 |
+
"Removing last two layers (global_pool & classifier).\n"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"output_type": "stream",
|
211 |
+
"name": "stderr",
|
212 |
+
"text": [
|
213 |
+
"Processing images: 100%|ββββββββββ| 7/7 [00:14<00:00, 2.02s/it]\n"
|
214 |
+
]
|
215 |
+
}
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"source": [
|
221 |
+
"#command line version (may need extra work)\n",
|
222 |
+
"!python /content/test.py --processor hed --use_cuda --output_dir /content/test/"
|
223 |
+
],
|
224 |
+
"metadata": {
|
225 |
+
"colab": {
|
226 |
+
"base_uri": "https://localhost:8080/"
|
227 |
+
},
|
228 |
+
"id": "lsJnu9BiJbId",
|
229 |
+
"outputId": "c68d113f-27bc-4bf0-9c04-625b1fce6aa5"
|
230 |
+
},
|
231 |
+
"execution_count": 1,
|
232 |
+
"outputs": [
|
233 |
+
{
|
234 |
+
"output_type": "stream",
|
235 |
+
"name": "stdout",
|
236 |
+
"text": [
|
237 |
+
"python3: can't open file '/content/test.py': [Errno 2] No such file or directory\n"
|
238 |
+
]
|
239 |
+
}
|
240 |
+
]
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"cell_type": "code",
|
244 |
+
"source": [
|
245 |
+
"### COMMAND LINE VERSION test.py\n",
|
246 |
+
"# based on https://github.com/patrickvonplaten/controlnet_aux\n",
|
247 |
+
"### which is derived from https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to the π€ Hub.\n",
|
248 |
+
"\n",
|
249 |
+
"#All credit & copyright goes to https://github.com/lllyasviel .\n",
|
250 |
+
"#some of the models are large comment them out to save space if not needed\n",
|
251 |
+
"import torch\n",
|
252 |
+
"import argparse\n",
|
253 |
+
"import os\n",
|
254 |
+
"import shutil\n",
|
255 |
+
"from PIL import Image\n",
|
256 |
+
"from tqdm import tqdm\n",
|
257 |
+
"from controlnet_aux import (CannyDetector, ContentShuffleDetector, HEDdetector,\n",
|
258 |
+
" LeresDetector, LineartAnimeDetector,\n",
|
259 |
+
" LineartDetector, MediapipeFaceDetector,\n",
|
260 |
+
" MidasDetector, MLSDdetector, NormalBaeDetector,\n",
|
261 |
+
" OpenposeDetector, PidiNetDetector, SamDetector,\n",
|
262 |
+
" ZoeDetector, DWposeDetector)\n",
|
263 |
+
"\n",
|
264 |
+
"# Create the directory /content/test\n",
|
265 |
+
"os.makedirs(\"/content/test\", exist_ok=True)\n",
|
266 |
+
"\n",
|
267 |
+
"INPUT_DIR = \"/content/frames\" # replace with your input directory\n",
|
268 |
+
"OUTPUT_DIR = \"/content/test\" # replace with your output directory\n",
|
269 |
+
"\n",
|
270 |
+
"# Check if CUDA is available and set the device accordingly\n",
|
271 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
272 |
+
"\n",
|
273 |
+
"def output(filename, img):\n",
|
274 |
+
" img.save(os.path.join(OUTPUT_DIR, filename))\n",
|
275 |
+
"\n",
|
276 |
+
"def process_image(processor, img):\n",
|
277 |
+
" return processor(img)\n",
|
278 |
+
"\n",
|
279 |
+
"def load_images():\n",
|
280 |
+
" if os.path.exists(OUTPUT_DIR):\n",
|
281 |
+
" shutil.rmtree(OUTPUT_DIR)\n",
|
282 |
+
" os.mkdir(OUTPUT_DIR)\n",
|
283 |
+
" images = []\n",
|
284 |
+
" filenames = []\n",
|
285 |
+
" for filename in os.listdir(INPUT_DIR):\n",
|
286 |
+
" if filename.endswith(\".png\") or filename.endswith(\".jpg\"):\n",
|
287 |
+
" img_path = os.path.join(INPUT_DIR, filename)\n",
|
288 |
+
" img = Image.open(img_path).convert(\"RGB\").resize((512, 512))\n",
|
289 |
+
" images.append(img)\n",
|
290 |
+
" filenames.append(filename)\n",
|
291 |
+
" return images, filenames\n",
|
292 |
+
"\n",
|
293 |
+
"def process_images(processor):\n",
|
294 |
+
" images, filenames = load_images()\n",
|
295 |
+
" for img, filename in tqdm(zip(images, filenames), total=len(images), desc=\"Processing images\"):\n",
|
296 |
+
" output_img = process_image(processor, img)\n",
|
297 |
+
" output(filename, output_img)\n",
|
298 |
+
"\n",
|
299 |
+
"\n",
|
300 |
+
"\n",
|
301 |
+
"# Initialize the argument parser\n",
|
302 |
+
"parser = argparse.ArgumentParser(description='Choose a processor to run.')\n",
|
303 |
+
"parser.add_argument('--processor', type=str, help='The name of the processor to run.')\n",
|
304 |
+
"parser.add_argument('--use_cuda', action='store_true', help='Use CUDA if available.')\n",
|
305 |
+
"parser.add_argument('--output_dir', type=str, default='./', help='The directory to save the output.')\n",
|
306 |
+
"# Parse the arguments\n",
|
307 |
+
"args = parser.parse_args()\n",
|
308 |
+
"\n",
|
309 |
+
"# Check if CUDA is available and set the device accordingly\n",
|
310 |
+
"device = torch.device(\"cuda\" if args.use_cuda and torch.cuda.is_available() else \"cpu\")\n",
|
311 |
+
"\n",
|
312 |
+
"\n",
|
313 |
+
"# Initialize the detectors\n",
|
314 |
+
"detectors = {\n",
|
315 |
+
" 'canny': CannyDetector(),\n",
|
316 |
+
" 'hed': HEDdetector.from_pretrained(\"lllyasviel/Annotators\"),\n",
|
317 |
+
" 'shuffle': ContentShuffleDetector(),\n",
|
318 |
+
" 'leres': LeresDetector.from_pretrained(\"lllyasviel/Annotators\"),\n",
|
319 |
+
" 'lineart_anime': LineartAnimeDetector.from_pretrained(\"lllyasviel/Annotators\"),\n",
|
320 |
+
" 'lineart': LineartDetector.from_pretrained(\"lllyasviel/Annotators\"),\n",
|
321 |
+
" 'mediapipe_face': MediapipeFaceDetector(),\n",
|
322 |
+
" 'midas': MidasDetector.from_pretrained(\"lllyasviel/Annotators\"),\n",
|
323 |
+
" 'mlsd': MLSDdetector.from_pretrained(\"lllyasviel/Annotators\"),\n",
|
324 |
+
" 'normal_bae': NormalBaeDetector.from_pretrained(\"lllyasviel/Annotators\"),\n",
|
325 |
+
" 'openpose': OpenposeDetector.from_pretrained(\"lllyasviel/Annotators\"),\n",
|
326 |
+
" 'pidi_net': PidiNetDetector.from_pretrained(\"lllyasviel/Annotators\"),\n",
|
327 |
+
" 'sam': SamDetector.from_pretrained(\"ybelkada/segment-anything\", subfolder=\"checkpoints\"),\n",
|
328 |
+
" # 'zoe': ZoeDetector.from_pretrained(\"lllyasviel/Annotators\"),\n",
|
329 |
+
" # 'dwpose': DWposeDetector(),\n",
|
330 |
+
"}\n",
|
331 |
+
"\n",
|
332 |
+
"# Run the chosen processor\n",
|
333 |
+
"if args.processor in detectors:\n",
|
334 |
+
" detector = detectors[args.processor]\n",
|
335 |
+
" # Run your code here with the chosen detector\n",
|
336 |
+
"else:\n",
|
337 |
+
" print(f\"Unknown processor: {args.processor}\")\n"
|
338 |
+
],
|
339 |
+
"metadata": {
|
340 |
+
"id": "8YYwMuMpJoKB"
|
341 |
+
},
|
342 |
+
"execution_count": null,
|
343 |
+
"outputs": []
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"cell_type": "code",
|
347 |
+
"source": [
|
348 |
+
"#@title interpolate processed frames (best to keep fps same as input video)\n",
|
349 |
+
"!ffmpeg -r 25 -i /content/test/frame_%d_%d.png -start_number 0 -end_number 6 -c:v libx264 -vf \"fps=25,format=yuv420p\" testpose1.mp4\n"
|
350 |
+
],
|
351 |
+
"metadata": {
|
352 |
+
"id": "8kUk-kFPwzmq"
|
353 |
+
},
|
354 |
+
"execution_count": null,
|
355 |
+
"outputs": []
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"cell_type": "code",
|
359 |
+
"source": [
|
360 |
+
"#display video\n",
|
361 |
+
"from IPython.display import HTML\n",
|
362 |
+
"from base64 import b64encode\n",
|
363 |
+
"\n",
|
364 |
+
"# Open the video file and read its contents\n",
|
365 |
+
"mp4 = open('/content/testpose.mp4', 'rb').read()\n",
|
366 |
+
"\n",
|
367 |
+
"# Encode the video data as a base64 string\n",
|
368 |
+
"data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n",
|
369 |
+
"\n",
|
370 |
+
"# Display the video using an HTML video element\n",
|
371 |
+
"HTML(f\"\"\"\n",
|
372 |
+
"<video width=400 controls>\n",
|
373 |
+
" <source src=\"{data_url}\" type=\"video/mp4\">\n",
|
374 |
+
"</video>\n",
|
375 |
+
"\"\"\")"
|
376 |
+
],
|
377 |
+
"metadata": {
|
378 |
+
"id": "6AKmRPK3J7GO"
|
379 |
+
},
|
380 |
+
"execution_count": null,
|
381 |
+
"outputs": []
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"cell_type": "code",
|
385 |
+
"source": [
|
386 |
+
"!zip -r nameof.zip <location of files and folder>"
|
387 |
+
],
|
388 |
+
"metadata": {
|
389 |
+
"id": "Oax1BHwYTZog"
|
390 |
+
},
|
391 |
+
"execution_count": null,
|
392 |
+
"outputs": []
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"cell_type": "code",
|
396 |
+
"execution_count": null,
|
397 |
+
"metadata": {
|
398 |
+
"id": "FaF3RdKdaFa8"
|
399 |
+
},
|
400 |
+
"outputs": [],
|
401 |
+
"source": [
|
402 |
+
"#@title Login to HuggingFace π€\n",
|
403 |
+
"\n",
|
404 |
+
"#@markdown You need to accept the model license before downloading or using the Stable Diffusion weights. Please, visit the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5), read the license and tick the checkbox if you agree. You have to be a registered user in π€ Hugging Face Hub, and you'll also need to use an access token for the code to work.\n",
|
405 |
+
"# https://huggingface.co/settings/tokens\n",
|
406 |
+
"!mkdir -p ~/.huggingface\n",
|
407 |
+
"HUGGINGFACE_TOKEN = \"\" #@param {type:\"string\"}\n",
|
408 |
+
"!echo -n \"{HUGGINGFACE_TOKEN}\" > ~/.huggingface/token"
|
409 |
+
]
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"cell_type": "code",
|
413 |
+
"execution_count": null,
|
414 |
+
"metadata": {
|
415 |
+
"id": "aEJZoFQ2YHIb"
|
416 |
+
},
|
417 |
+
"outputs": [],
|
418 |
+
"source": [
|
419 |
+
"@#title upload to Huggingface\n",
|
420 |
+
"from huggingface_hub import HfApi\n",
|
421 |
+
"api = HfApi()\n",
|
422 |
+
"api.upload_file(\n",
|
423 |
+
" path_or_fileobj=\"\",\n",
|
424 |
+
" path_in_repo=\"name.zip\",\n",
|
425 |
+
" repo_id=\"\",\n",
|
426 |
+
" repo_type=\"dataset\",\n",
|
427 |
+
")"
|
428 |
+
]
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"cell_type": "code",
|
432 |
+
"source": [],
|
433 |
+
"metadata": {
|
434 |
+
"id": "lUf1h6FSKlr7"
|
435 |
+
},
|
436 |
+
"execution_count": null,
|
437 |
+
"outputs": []
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"cell_type": "code",
|
441 |
+
"source": [],
|
442 |
+
"metadata": {
|
443 |
+
"id": "9DOaoGnnKl_M"
|
444 |
+
},
|
445 |
+
"execution_count": null,
|
446 |
+
"outputs": []
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"cell_type": "code",
|
450 |
+
"source": [],
|
451 |
+
"metadata": {
|
452 |
+
"id": "H_iCXpzCKmQl"
|
453 |
+
},
|
454 |
+
"execution_count": null,
|
455 |
+
"outputs": []
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"cell_type": "code",
|
459 |
+
"source": [
|
460 |
+
"#@title working FAST batch processing CODE TEMPLATE WIP (just doesnt save as og filenames)\n",
|
461 |
+
"\n",
|
462 |
+
"import torch\n",
|
463 |
+
"import os\n",
|
464 |
+
"from typing import List\n",
|
465 |
+
"from cog import BasePredictor, Input, Path\n",
|
466 |
+
"from PIL import Image\n",
|
467 |
+
"from io import BytesIO\n",
|
468 |
+
"import time\n",
|
469 |
+
"from tqdm import tqdm\n",
|
470 |
+
"from controlnet_aux.processor import Processor\n",
|
471 |
+
"from controlnet_aux import (\n",
|
472 |
+
" HEDdetector,\n",
|
473 |
+
" MidasDetector,\n",
|
474 |
+
" MLSDdetector,\n",
|
475 |
+
" OpenposeDetector,\n",
|
476 |
+
" PidiNetDetector,\n",
|
477 |
+
" NormalBaeDetector,\n",
|
478 |
+
" LineartDetector,\n",
|
479 |
+
" LineartAnimeDetector,\n",
|
480 |
+
" CannyDetector,\n",
|
481 |
+
" ContentShuffleDetector,\n",
|
482 |
+
" ZoeDetector,\n",
|
483 |
+
" MediapipeFaceDetector,\n",
|
484 |
+
" SamDetector,\n",
|
485 |
+
" LeresDetector,\n",
|
486 |
+
" DWposeDetector,\n",
|
487 |
+
")\n",
|
488 |
+
"\n",
|
489 |
+
"#Processor = processor\n",
|
490 |
+
"image_dir = '/content/frames'\n",
|
491 |
+
"\n",
|
492 |
+
"class Predictor(BasePredictor):\n",
|
493 |
+
" def setup(self) -> None:\n",
|
494 |
+
" \"\"\"Load the model into memory to make running multiple predictions efficient\"\"\"\n",
|
495 |
+
"\n",
|
496 |
+
" self.annotators = {\n",
|
497 |
+
" \"canny\": CannyDetector(),\n",
|
498 |
+
" \"content\": ContentShuffleDetector(),\n",
|
499 |
+
" \"face_detector\": MediapipeFaceDetector(),\n",
|
500 |
+
" \"hed\": self.initialize_detector(HEDdetector),\n",
|
501 |
+
" \"midas\": self.initialize_detector(MidasDetector),\n",
|
502 |
+
" \"mlsd\": self.initialize_detector(MLSDdetector),\n",
|
503 |
+
" \"open_pose\": self.initialize_detector(OpenposeDetector),\n",
|
504 |
+
" \"pidi\": self.initialize_detector(PidiNetDetector),\n",
|
505 |
+
" \"normal_bae\": self.initialize_detector(NormalBaeDetector),\n",
|
506 |
+
" \"lineart\": self.initialize_detector(LineartDetector),\n",
|
507 |
+
" \"lineart_anime\": self.initialize_detector(LineartAnimeDetector),\n",
|
508 |
+
" # \"zoe\": self.initialize_detector(ZoeDetector),\n",
|
509 |
+
"\n",
|
510 |
+
"\n",
|
511 |
+
" # \"mobile_sam\": self.initialize_detector(\n",
|
512 |
+
" # SamDetector,\n",
|
513 |
+
" # model_name=\"dhkim2810/MobileSAM\",\n",
|
514 |
+
" # model_type=\"vit_t\",\n",
|
515 |
+
" # filename=\"mobile_sam.pt\",\n",
|
516 |
+
" # ),\n",
|
517 |
+
" \"leres\": self.initialize_detector(LeresDetector),\n",
|
518 |
+
" }\n",
|
519 |
+
"\n",
|
520 |
+
" torch.device(\"cuda\")\n",
|
521 |
+
"\n",
|
522 |
+
" def initialize_detector(\n",
|
523 |
+
" self, detector_class, model_name=\"lllyasviel/Annotators\", **kwargs\n",
|
524 |
+
" ):\n",
|
525 |
+
" return detector_class.from_pretrained(\n",
|
526 |
+
" model_name,\n",
|
527 |
+
" cache_dir=\"model_cache\",\n",
|
528 |
+
" **kwargs,\n",
|
529 |
+
" )\n",
|
530 |
+
"\n",
|
531 |
+
" def process_images(self, image_dir: str) -> List[Path]:\n",
|
532 |
+
" # Start time for overall processing\n",
|
533 |
+
" start_time = time.time()\n",
|
534 |
+
"\n",
|
535 |
+
" # Load all images into memory\n",
|
536 |
+
" images = [Image.open(os.path.join(image_dir, image_name)).convert(\"RGB\").resize((512, 512)) for image_name in os.listdir(image_dir)]\n",
|
537 |
+
"\n",
|
538 |
+
" paths = []\n",
|
539 |
+
"\n",
|
540 |
+
" def predict(\n",
|
541 |
+
" self,\n",
|
542 |
+
" image_dir: str = Input(\n",
|
543 |
+
" default=\"/content/frames\",\n",
|
544 |
+
" description=\"Directory containing the images to be processed\"\n",
|
545 |
+
" )\n",
|
546 |
+
"):\n",
|
547 |
+
"\n",
|
548 |
+
" canny: bool = Input(\n",
|
549 |
+
" default=True,\n",
|
550 |
+
" description=\"Run canny edge detection\",\n",
|
551 |
+
" ),\n",
|
552 |
+
" content: bool = Input(\n",
|
553 |
+
" default=True,\n",
|
554 |
+
" description=\"Run content shuffle detection\",\n",
|
555 |
+
" ),\n",
|
556 |
+
" face_detector: bool = Input(\n",
|
557 |
+
" default=True,\n",
|
558 |
+
" description=\"Run face detection\",\n",
|
559 |
+
" ),\n",
|
560 |
+
" hed: bool = Input(\n",
|
561 |
+
" default=True,\n",
|
562 |
+
" description=\"Run HED detection\",\n",
|
563 |
+
" ),\n",
|
564 |
+
" midas: bool = Input(\n",
|
565 |
+
" default=True,\n",
|
566 |
+
" description=\"Run Midas detection\",\n",
|
567 |
+
" ),\n",
|
568 |
+
" mlsd: bool = Input(\n",
|
569 |
+
" default=True,\n",
|
570 |
+
" description=\"Run MLSD detection\",\n",
|
571 |
+
" ),\n",
|
572 |
+
" open_pose: bool = Input(\n",
|
573 |
+
" default=True,\n",
|
574 |
+
" description=\"Run Openpose detection\",\n",
|
575 |
+
" ),\n",
|
576 |
+
" pidi: bool = Input(\n",
|
577 |
+
" default=True,\n",
|
578 |
+
" description=\"Run PidiNet detection\",\n",
|
579 |
+
" ),\n",
|
580 |
+
" normal_bae: bool = Input(\n",
|
581 |
+
" default=True,\n",
|
582 |
+
" description=\"Run NormalBae detection\",\n",
|
583 |
+
" ),\n",
|
584 |
+
" lineart: bool = Input(\n",
|
585 |
+
" default=True,\n",
|
586 |
+
" description=\"Run Lineart detection\",\n",
|
587 |
+
" ),\n",
|
588 |
+
" lineart_anime: bool = Input(\n",
|
589 |
+
" default=True,\n",
|
590 |
+
" description=\"Run LineartAnime detection\",\n",
|
591 |
+
"\n",
|
592 |
+
" ),\n",
|
593 |
+
" leres: bool = Input(\n",
|
594 |
+
" default=True,\n",
|
595 |
+
" description=\"Run Leres detection\",\n",
|
596 |
+
" ),\n",
|
597 |
+
"\n",
|
598 |
+
"\n",
|
599 |
+
" # Load image\n",
|
600 |
+
" # Load all images into memory\n",
|
601 |
+
" start_time = time.time() # Start time for overall processing\n",
|
602 |
+
" images = [Image.open(os.path.join(image_dir, image_name)).convert(\"RGB\").resize((512, 512)) for image_name in os.listdir(image_dir)]\n",
|
603 |
+
"\n",
|
604 |
+
" paths = []\n",
|
605 |
+
" annotator_inputs = {\n",
|
606 |
+
" \"canny\": canny, \"openpose_full\": openpose_full,\n",
|
607 |
+
" \"content\": content,\n",
|
608 |
+
" \"face_detector\": face_detector,\n",
|
609 |
+
" \"hed\": hed,\n",
|
610 |
+
" \"midas\": midas,\n",
|
611 |
+
" \"mlsd\": mlsd,\n",
|
612 |
+
" \"open_pose\": open_pose,\n",
|
613 |
+
" \"pidi\": pidi,\n",
|
614 |
+
" \"normal_bae\": normal_bae,\n",
|
615 |
+
" \"lineart\": lineart,\n",
|
616 |
+
" \"lineart_anime\": lineart_anime,\n",
|
617 |
+
"\n",
|
618 |
+
" \"leres\": leres,\n",
|
619 |
+
" }\n",
|
620 |
+
" for annotator, run_annotator in annotator_inputs.items():\n",
|
621 |
+
" if run_annotator:\n",
|
622 |
+
" processed_image = self.process_image(image, annotator)\n",
|
623 |
+
" #processed_image.save(f\"/tmp/{annotator}.png\")\n",
|
624 |
+
" processed_path = f'/content/test2/{image_name}'\n",
|
625 |
+
"\n",
|
626 |
+
" return paths\n",
|
627 |
+
"\n",
|
628 |
+
"import time\n",
|
629 |
+
"from tqdm import tqdm\n",
|
630 |
+
"\n",
|
631 |
+
"# Load images and paths\n",
|
632 |
+
"images = []\n",
|
633 |
+
"image_paths = []\n",
|
634 |
+
"for name in os.listdir(image_dir):\n",
|
635 |
+
" path = os.path.join(image_dir, name)\n",
|
636 |
+
" image = Image.open(path)\n",
|
637 |
+
"\n",
|
638 |
+
" images.append(image)\n",
|
639 |
+
" image_paths.append(path)\n",
|
640 |
+
"\n",
|
641 |
+
"# Process images\n",
|
642 |
+
"processed = [\n",
|
643 |
+
" Processor(\"lineart_anime\") for path in tqdm(image_paths)\n",
|
644 |
+
"]\n",
|
645 |
+
"\n",
|
646 |
+
"# Save processed\n",
|
647 |
+
"from PIL import Image\n",
|
648 |
+
"\n",
|
649 |
+
"# Save processed\n",
|
650 |
+
"for name, processor in zip(images, processed):\n",
|
651 |
+
"\n",
|
652 |
+
" # Process image\n",
|
653 |
+
" # Process all images with progress bar\n",
|
654 |
+
" processed_images = [processor(image, to_pil=True) for image in tqdm(images, desc=\"Processing images\")]\n",
|
655 |
+
"\n",
|
656 |
+
" # Save each image\n",
|
657 |
+
" for i, img in enumerate(processed_images):\n",
|
658 |
+
" processed_path = f'/content/test/{name}_{i}.png'\n",
|
659 |
+
" img.save(processed_path)\n",
|
660 |
+
"\n",
|
661 |
+
"from PIL import Image\n",
|
662 |
+
"\n",
|
663 |
+
"\n"
|
664 |
+
],
|
665 |
+
"metadata": {
|
666 |
+
"id": "ajRzOZtiDrGP",
|
667 |
+
"colab": {
|
668 |
+
"base_uri": "https://localhost:8080/",
|
669 |
+
"height": 213,
|
670 |
+
"referenced_widgets": [
|
671 |
+
"b7207b0dd06849beb14d8c0cdaebcaa0",
|
672 |
+
"ce42c14100d342f1a1b929fead2c1d60",
|
673 |
+
"8d60c1de06464ac49b383e558e33c8f7",
|
674 |
+
"83779c3a8afc4fb4a4b71bb3b4dae8be",
|
675 |
+
"ea55fcf91d4346c5820079305f5c4752",
|
676 |
+
"2e93ac3132a74f9ea031f94c222230fb",
|
677 |
+
"bb87d0010b71413db38634d4f3d7dc9a",
|
678 |
+
"d97ff4fe72954aa5891a44e48b7eea35",
|
679 |
+
"70fa493960104cf4bc032470ff7f3dcf",
|
680 |
+
"2302182b276c4b3b82d23b35001a5893",
|
681 |
+
"623b93d070da4478abb4039f722af9ec"
|
682 |
+
]
|
683 |
+
},
|
684 |
+
"outputId": "d102947c-450c-4dcf-96b1-d8fedf5da525"
|
685 |
+
},
|
686 |
+
"execution_count": null,
|
687 |
+
"outputs": [
|
688 |
+
{
|
689 |
+
"output_type": "stream",
|
690 |
+
"name": "stderr",
|
691 |
+
"text": [
|
692 |
+
"\r 0%| | 0/7 [00:00<?, ?it/s]"
|
693 |
+
]
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"output_type": "display_data",
|
697 |
+
"data": {
|
698 |
+
"text/plain": [
|
699 |
+
"netG.pth: 0%| | 0.00/218M [00:00<?, ?B/s]"
|
700 |
+
],
|
701 |
+
"application/vnd.jupyter.widget-view+json": {
|
702 |
+
"version_major": 2,
|
703 |
+
"version_minor": 0,
|
704 |
+
"model_id": "b7207b0dd06849beb14d8c0cdaebcaa0"
|
705 |
+
}
|
706 |
+
},
|
707 |
+
"metadata": {}
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"output_type": "stream",
|
711 |
+
"name": "stderr",
|
712 |
+
"text": [
|
713 |
+
"100%|ββββββββββ| 7/7 [00:06<00:00, 1.14it/s]\n",
|
714 |
+
"Processing images: 100%|ββββββββββ| 7/7 [00:07<00:00, 1.07s/it]\n",
|
715 |
+
"Processing images: 100%|ββββββββββ| 7/7 [00:06<00:00, 1.01it/s]\n",
|
716 |
+
"Processing images: 100%|ββββββββββ| 7/7 [00:06<00:00, 1.04it/s]\n",
|
717 |
+
"Processing images: 100%|ββββββββββ| 7/7 [00:07<00:00, 1.05s/it]\n",
|
718 |
+
"Processing images: 100%|ββββββββββ| 7/7 [00:06<00:00, 1.11it/s]\n",
|
719 |
+
"Processing images: 100%|ββββββββββ| 7/7 [00:07<00:00, 1.06s/it]\n",
|
720 |
+
"Processing images: 100%|ββββββββββ| 7/7 [00:06<00:00, 1.10it/s]\n"
|
721 |
+
]
|
722 |
+
}
|
723 |
+
]
|
724 |
+
}
|
725 |
+
]
|
726 |
+
}
|