File size: 1,771 Bytes
4d6ad0e
 
 
bf19162
4d6ad0e
 
 
 
 
 
 
 
 
 
 
 
bf19162
54df004
bf19162
 
4d6ad0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf19162
 
 
4d6ad0e
bf19162
 
4d6ad0e
 
bf19162
 
4d6ad0e
 
54df004
 
bf19162
 
 
 
 
 
 
54df004
 
4d6ad0e
 
 
54df004
 
4d6ad0e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: transformers
license: apache-2.0
base_model: biodatlab/whisper-th-small-combined
tags:
- generated_from_trainer
model-index:
- name: outs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# outs

This model is a fine-tuned version of [biodatlab/whisper-th-small-combined](https://huggingface.co/biodatlab/whisper-th-small-combined) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1552
- Cer: 13.5275

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.1733        | 1.8622 | 500  | 0.1206          | 7.2293  |
| 0.1159        | 3.7244 | 1000 | 0.1404          | 10.6943 |
| 0.0596        | 5.5866 | 1500 | 0.1665          | 12.2340 |
| 0.0399        | 7.4488 | 2000 | 0.1486          | 11.8316 |
| 0.0224        | 9.3110 | 2500 | 0.1552          | 13.5275 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1