import requests from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration # Initialize processor and model processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to("cuda") # Function to process and caption an image from a URL def caption_image(image_url): try: # Load image from the provided URL raw_image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') # Conditional image captioning text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt").to("cuda") out = model.generate(**inputs) conditional_caption = processor.decode(out[0], skip_special_tokens=True) # Unconditional image captioning inputs = processor(raw_image, return_tensors="pt").to("cuda") out = model.generate(**inputs) unconditional_caption = processor.decode(out[0], skip_special_tokens=True) # Print the results print("Conditional Caption:", conditional_caption) print("Unconditional Caption:", unconditional_caption) except Exception as e: print(f"Error occurred: {e}") # Get image URL from user input image_url = input("Enter the image URL: ") caption_image(image_url)