wenge-research commited on
Commit
646c888
1 Parent(s): a0f7847

First model version

Browse files
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "YayiForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_yayi.YayiConfig",
7
+ "AutoModelForCausalLM": "modeling_yayi.YayiForCausalLM"
8
+ },
9
+ "bos_token_id": 1,
10
+ "causal_mask": false,
11
+ "eos_token_id": 2,
12
+ "grouped_query": false,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 7168,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 16384,
17
+ "max_position_embeddings": 4096,
18
+ "model_type": "yayi",
19
+ "num_attention_heads": 64,
20
+ "num_hidden_layers": 64,
21
+ "pad_token_id": 3,
22
+ "rms_norm_eps": 1e-06,
23
+ "share_kv_heads_num": 2,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
+ "transformers_version": "4.29.1",
27
+ "use_cache": true,
28
+ "vocab_size": 81920
29
+ }
configuration_yayi.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ from transformers.configuration_utils import PretrainedConfig
22
+ from transformers.utils import logging
23
+
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+ #YAYI_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
28
+
29
+
30
+ class YayiConfig(PretrainedConfig):
31
+ r"""
32
+ This is the configuration class to store the configuration of a [`YayiModel`]. It is used to instantiate an Yayi
33
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
34
+ defaults will yield a similar configuration to that of the Yayi-7B.
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+
40
+ Args:
41
+ vocab_size (`int`, *optional*, defaults to 32000):
42
+ Vocabulary size of the Yayi model. Defines the number of different tokens that can be represented by the
43
+ `inputs_ids` passed when calling [`YayiModel`]
44
+ hidden_size (`int`, *optional*, defaults to 4096):
45
+ Dimension of the hidden representations.
46
+ intermediate_size (`int`, *optional*, defaults to 11008):
47
+ Dimension of the MLP representations.
48
+ num_hidden_layers (`int`, *optional*, defaults to 32):
49
+ Number of hidden layers in the Transformer encoder.
50
+ num_attention_heads (`int`, *optional*, defaults to 32):
51
+ Number of attention heads for each attention layer in the Transformer encoder.
52
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
53
+ The non-linear activation function (function or string) in the decoder.
54
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
55
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
56
+ just in case (e.g., 512 or 1024 or 2048).
57
+ initializer_range (`float`, *optional*, defaults to 0.02):
58
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
59
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
60
+ The epsilon used by the rms normalization layers.
61
+ use_cache (`bool`, *optional*, defaults to `True`):
62
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
63
+ relevant if `config.is_decoder=True`.
64
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
65
+ Whether to tie weight embeddings
66
+ Example:
67
+
68
+ ```python
69
+ >>> from transformers import YayiModel, YayiConfig
70
+
71
+ >>> # Initializing a Yayi Yayi-7b style configuration
72
+ >>> configuration = YayiConfig()
73
+
74
+ >>> # Initializing a model from the Yayi-7b style configuration
75
+ >>> model = YayiModel(configuration)
76
+
77
+ >>> # Accessing the model configuration
78
+ >>> configuration = model.config
79
+ ```"""
80
+ model_type = "yayi"
81
+ keys_to_ignore_at_inference = ["past_key_values"]
82
+
83
+ def __init__(
84
+ self,
85
+ vocab_size=32000,
86
+ hidden_size=1024,
87
+ intermediate_size=5504,
88
+ num_hidden_layers=32,
89
+ num_attention_heads=32,
90
+ hidden_act="silu",
91
+ max_position_embeddings=1023,
92
+ initializer_range=0.02,
93
+ rms_norm_eps=1e-6,
94
+ use_cache=True,
95
+ pad_token_id=0,
96
+ bos_token_id=1,
97
+ eos_token_id=2,
98
+ tie_word_embeddings=False,
99
+ causal_mask=True,
100
+ **kwargs,
101
+ ):
102
+ self.vocab_size = vocab_size
103
+ self.max_position_embeddings = max_position_embeddings
104
+ self.hidden_size = hidden_size
105
+ self.intermediate_size = intermediate_size
106
+ self.num_hidden_layers = num_hidden_layers
107
+ self.num_attention_heads = num_attention_heads
108
+ self.hidden_act = hidden_act
109
+ self.initializer_range = initializer_range
110
+ self.rms_norm_eps = rms_norm_eps
111
+ self.use_cache = use_cache
112
+ self.causal_mask = causal_mask
113
+ super().__init__(
114
+ pad_token_id=pad_token_id,
115
+ bos_token_id=bos_token_id,
116
+ eos_token_id=eos_token_id,
117
+ tie_word_embeddings=tie_word_embeddings,
118
+ **kwargs,
119
+ )
120
+
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 3,
6
+ "transformers_version": "4.29.1"
7
+ }
modeling_yayi.py ADDED
@@ -0,0 +1,689 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ import torch.utils.checkpoint
30
+ from transformers import PreTrainedModel, add_start_docstrings
31
+ from transformers.activations import ACT2FN
32
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
33
+ from transformers.modeling_outputs import SequenceClassifierOutputWithPast
34
+ from transformers.utils import logging, add_start_docstrings_to_model_forward, replace_return_docstrings
35
+ from .configuration_yayi import YayiConfig
36
+ logger = logging.get_logger(__name__)
37
+
38
+ _CONFIG_FOR_DOC = "YayiConfig"
39
+
40
+
41
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
42
+ def _make_causal_mask(
43
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
44
+ ):
45
+ """
46
+ Make causal mask used for bi-directional self-attention.
47
+ """
48
+ bsz, tgt_len = input_ids_shape
49
+
50
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
51
+
52
+ mask_cond = torch.arange(mask.size(-1), device=device)
53
+
54
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
55
+ mask = mask.to(dtype)
56
+
57
+ if past_key_values_length > 0:
58
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
59
+
60
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
61
+
62
+
63
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
64
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
65
+ """
66
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
67
+ """
68
+ bsz, src_len = mask.size()
69
+ tgt_len = tgt_len if tgt_len is not None else src_len
70
+
71
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
72
+
73
+ inverted_mask = 1.0 - expanded_mask
74
+
75
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
76
+
77
+
78
+ class RMSNorm(nn.Module):
79
+ def __init__(self, hidden_size, eps=1e-6):
80
+ """
81
+ RMSNorm is equivalent to T5LayerNorm
82
+ """
83
+ super().__init__()
84
+ self.weight = nn.Parameter(torch.ones(hidden_size))
85
+ self.variance_epsilon = eps
86
+
87
+ def forward(self, hidden_states):
88
+ input_dtype = hidden_states.dtype
89
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
90
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
91
+
92
+ return (self.weight * hidden_states).to(input_dtype)
93
+
94
+
95
+ class YayiRotaryEmbedding(torch.nn.Module):
96
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
97
+ super().__init__()
98
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
99
+ self.register_buffer("inv_freq", inv_freq)
100
+
101
+ # Build here to make `torch.jit.trace` work.
102
+ self.max_seq_len_cached = max_position_embeddings
103
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
104
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
105
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
106
+ emb = torch.cat((freqs, freqs), dim=-1)
107
+ dtype = torch.get_default_dtype()
108
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
109
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
110
+
111
+ def forward(self, x, seq_len=None):
112
+ # x: [bs, num_attention_heads, seq_len, head_size]
113
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
114
+ if seq_len > self.max_seq_len_cached:
115
+ self.max_seq_len_cached = seq_len
116
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
117
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
118
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
119
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
120
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False)
121
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False)
122
+ return (
123
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
124
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
125
+ )
126
+
127
+
128
+ def rotate_half(x):
129
+ """Rotates half the hidden dims of the input."""
130
+ x1 = x[..., : x.shape[-1] // 2]
131
+ x2 = x[..., x.shape[-1] // 2 :]
132
+ return torch.cat((-x2, x1), dim=-1)
133
+
134
+
135
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
136
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
137
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
138
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
139
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
140
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
141
+ q_embed = (q * cos) + (rotate_half(q) * sin)
142
+ k_embed = (k * cos) + (rotate_half(k) * sin)
143
+ return q_embed, k_embed
144
+
145
+
146
+ class YayiMLP(nn.Module):
147
+ def __init__(
148
+ self,
149
+ hidden_size: int,
150
+ intermediate_size: int,
151
+ hidden_act: str,
152
+ ):
153
+ super().__init__()
154
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
155
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
156
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
157
+ self.act_fn = ACT2FN[hidden_act]
158
+
159
+ def forward(self, x):
160
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
161
+
162
+
163
+ class YayiAttention(nn.Module):
164
+ def __init__(self, config: YayiConfig):
165
+ super().__init__()
166
+ self.config = config
167
+ self.hidden_size = config.hidden_size
168
+ self.num_heads = config.num_attention_heads
169
+ self.head_dim = self.hidden_size // self.num_heads
170
+ self.max_position_embeddings = config.max_position_embeddings
171
+ self.causal_mask = config.causal_mask
172
+
173
+ if (self.head_dim * self.num_heads) != self.hidden_size:
174
+ raise ValueError(
175
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
176
+ f" and `num_heads`: {self.num_heads})."
177
+ )
178
+
179
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
180
+ self.k_proj = nn.Linear(self.hidden_size, int(self.head_dim), bias=False)
181
+ self.v_proj = nn.Linear(self.hidden_size, int(self.head_dim), bias=False)
182
+
183
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
184
+ self.rotary_emb = YayiRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
185
+
186
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
187
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
188
+
189
+ def forward(
190
+ self,
191
+ hidden_states: torch.Tensor,
192
+ attention_mask: Optional[torch.Tensor] = None,
193
+ position_ids: Optional[torch.LongTensor] = None,
194
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
195
+ output_attentions: bool = False,
196
+ use_cache: bool = False,
197
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
198
+ bsz, q_len, _ = hidden_states.size()
199
+
200
+ # query_states [batch_size, num_heads, q_len, head_dim]
201
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
202
+
203
+ # multi-query attention
204
+ # key_states value_states [batch_size, 1, q_len, head_dim]
205
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, 1, self.head_dim).transpose(1, 2)
206
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, 1, self.head_dim).transpose(1, 2)
207
+
208
+ kv_seq_len = key_states.shape[-2]
209
+ if past_key_value is not None:
210
+ kv_seq_len += past_key_value[0].shape[-2]
211
+
212
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
213
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
214
+
215
+ # key_states value_states [batch_size, num_heads, kv_len, head_dim]
216
+ if past_key_value is not None:
217
+ # reuse k, v, self_attention
218
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
219
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
220
+
221
+ past_key_value = (key_states, value_states) if use_cache else None
222
+
223
+ # attn_weights [batch_size, num_heads, q_len, kv_seq_len]
224
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
225
+
226
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
227
+ raise ValueError(
228
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
229
+ f" {attn_weights.size()}"
230
+ )
231
+
232
+ if attention_mask is not None:
233
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
234
+ raise ValueError(
235
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
236
+ )
237
+ attn_weights = attn_weights + attention_mask
238
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
239
+
240
+ # upcast attention to fp32
241
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
242
+ attn_output = torch.matmul(attn_weights, value_states)
243
+
244
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
245
+ raise ValueError(
246
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
247
+ f" {attn_output.size()}"
248
+ )
249
+
250
+ attn_output = attn_output.transpose(1, 2)
251
+
252
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
253
+
254
+ attn_output = self.o_proj(attn_output)
255
+
256
+ if not output_attentions:
257
+ attn_weights = None
258
+
259
+ return attn_output, attn_weights, past_key_value
260
+
261
+
262
+ class YayiDecoderLayer(nn.Module):
263
+ def __init__(self, config: YayiConfig):
264
+ super().__init__()
265
+ self.hidden_size = config.hidden_size
266
+ self.self_attn = YayiAttention(config=config)
267
+ self.mlp = YayiMLP(
268
+ hidden_size=self.hidden_size,
269
+ intermediate_size=config.intermediate_size,
270
+ hidden_act=config.hidden_act,
271
+ )
272
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
273
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
274
+
275
+ def forward(
276
+ self,
277
+ hidden_states: torch.Tensor,
278
+ attention_mask: Optional[torch.Tensor] = None,
279
+ position_ids: Optional[torch.LongTensor] = None,
280
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
281
+ output_attentions: Optional[bool] = False,
282
+ use_cache: Optional[bool] = False,
283
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
284
+ """
285
+ Args:
286
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
287
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
288
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
289
+ output_attentions (`bool`, *optional*):
290
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
291
+ returned tensors for more detail.
292
+ use_cache (`bool`, *optional*):
293
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
294
+ (see `past_key_values`).
295
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
296
+ """
297
+
298
+ residual = hidden_states
299
+
300
+ hidden_states = self.input_layernorm(hidden_states)
301
+
302
+ # Self Attention
303
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
304
+ hidden_states=hidden_states,
305
+ attention_mask=attention_mask,
306
+ position_ids=position_ids,
307
+ past_key_value=past_key_value,
308
+ output_attentions=output_attentions,
309
+ use_cache=use_cache,
310
+ )
311
+ hidden_states = residual + hidden_states
312
+
313
+ # Fully Connected
314
+ residual = hidden_states
315
+ hidden_states = self.post_attention_layernorm(hidden_states)
316
+ hidden_states = self.mlp(hidden_states)
317
+ hidden_states = residual + hidden_states
318
+
319
+ outputs = (hidden_states,)
320
+
321
+ if output_attentions:
322
+ outputs += (self_attn_weights,)
323
+
324
+ if use_cache:
325
+ outputs += (present_key_value,)
326
+
327
+ return outputs
328
+
329
+
330
+ class YayiPreTrainedModel(PreTrainedModel):
331
+ config_class = YayiConfig
332
+ base_model_prefix = "model"
333
+ supports_gradient_checkpointing = True
334
+ _no_split_modules = ["YayiDecoderLayer"]
335
+ _skip_keys_device_placement = "past_key_values"
336
+
337
+ def _init_weights(self, module):
338
+ std = self.config.initializer_range
339
+ if isinstance(module, nn.Linear):
340
+ module.weight.data.normal_(mean=0.0, std=std)
341
+ if module.bias is not None:
342
+ module.bias.data.zero_()
343
+ elif isinstance(module, nn.Embedding):
344
+ module.weight.data.normal_(mean=0.0, std=std)
345
+ if module.padding_idx is not None:
346
+ module.weight.data[module.padding_idx].zero_()
347
+
348
+ def _set_gradient_checkpointing(self, module, value=False):
349
+ if isinstance(module, YayiModel):
350
+ module.gradient_checkpointing = value
351
+
352
+
353
+ class YayiModel(YayiPreTrainedModel):
354
+ """
355
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`YayiDecoderLayer`]
356
+
357
+ Args:
358
+ config: YayiConfig
359
+ """
360
+
361
+ def __init__(self, config: YayiConfig):
362
+ super().__init__(config)
363
+ self.padding_idx = config.pad_token_id
364
+ self.vocab_size = config.vocab_size
365
+ self.num_heads = config.num_attention_heads
366
+ self.causal_mask = config.causal_mask
367
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
368
+ self.layers = nn.ModuleList([YayiDecoderLayer(config) for _ in range(config.num_hidden_layers)])
369
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
370
+
371
+ self.gradient_checkpointing = False
372
+ # Initialize weights and apply final processing
373
+ self.post_init()
374
+
375
+ def get_input_embeddings(self):
376
+ return self.embed_tokens
377
+
378
+ def set_input_embeddings(self, value):
379
+ self.embed_tokens = value
380
+
381
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
382
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
383
+ # create causal mask
384
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
385
+ combined_attention_mask = None
386
+ if input_shape[-1] > 1:
387
+ combined_attention_mask = _make_causal_mask(
388
+ input_shape,
389
+ inputs_embeds.dtype,
390
+ device=inputs_embeds.device,
391
+ past_key_values_length=past_key_values_length,
392
+ )
393
+
394
+ if attention_mask is not None:
395
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
396
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
397
+ inputs_embeds.device
398
+ )
399
+ combined_attention_mask = (
400
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
401
+ )
402
+
403
+ return combined_attention_mask
404
+
405
+
406
+ def forward(
407
+ self,
408
+ input_ids: torch.LongTensor = None,
409
+ attention_mask: Optional[torch.Tensor] = None,
410
+ position_ids: Optional[torch.LongTensor] = None,
411
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
412
+ inputs_embeds: Optional[torch.FloatTensor] = None,
413
+ use_cache: Optional[bool] = None,
414
+ output_attentions: Optional[bool] = None,
415
+ output_hidden_states: Optional[bool] = None,
416
+ return_dict: Optional[bool] = None,
417
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
418
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
419
+ output_hidden_states = (
420
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
421
+ )
422
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
423
+
424
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
425
+
426
+ # retrieve input_ids and inputs_embeds
427
+ if input_ids is not None and inputs_embeds is not None:
428
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
429
+ elif input_ids is not None:
430
+ batch_size, seq_length = input_ids.shape
431
+ elif inputs_embeds is not None:
432
+ batch_size, seq_length, _ = inputs_embeds.shape
433
+ else:
434
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
435
+
436
+ seq_length_with_past = seq_length
437
+ past_key_values_length = 0
438
+
439
+ if past_key_values is not None:
440
+ past_key_values_length = past_key_values[0][0].shape[2]
441
+ seq_length_with_past = seq_length_with_past + past_key_values_length
442
+
443
+ # 计算position_ids
444
+ if position_ids is None:
445
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
446
+ position_ids = torch.arange(
447
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
448
+ )
449
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
450
+ else:
451
+ position_ids = position_ids.view(-1, seq_length).long()
452
+
453
+ if inputs_embeds is None:
454
+ inputs_embeds = self.embed_tokens(input_ids)
455
+ # embed positions
456
+ if attention_mask is None:
457
+ attention_mask = torch.ones(
458
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
459
+ )
460
+
461
+ attention_mask = self._prepare_decoder_attention_mask(
462
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
463
+ )
464
+
465
+ hidden_states = inputs_embeds
466
+
467
+ if self.gradient_checkpointing and self.training:
468
+ if use_cache:
469
+ logger.warning_once(
470
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
471
+ )
472
+ use_cache = False
473
+
474
+ # decoder layers
475
+ all_hidden_states = () if output_hidden_states else None
476
+ all_self_attns = () if output_attentions else None
477
+ next_decoder_cache = () if use_cache else None
478
+
479
+ for idx, decoder_layer in enumerate(self.layers):
480
+ if output_hidden_states:
481
+ all_hidden_states += (hidden_states,)
482
+
483
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
484
+
485
+ if self.gradient_checkpointing and self.training:
486
+
487
+ def create_custom_forward(module):
488
+ def custom_forward(*inputs):
489
+ # None for past_key_value
490
+ return module(*inputs, output_attentions, None)
491
+
492
+ return custom_forward
493
+
494
+ layer_outputs = torch.utils.checkpoint.checkpoint(
495
+ create_custom_forward(decoder_layer),
496
+ hidden_states,
497
+ attention_mask,
498
+ position_ids,
499
+ None,
500
+ )
501
+ else:
502
+ layer_outputs = decoder_layer(
503
+ hidden_states,
504
+ attention_mask=attention_mask,
505
+ position_ids=position_ids,
506
+ past_key_value=past_key_value,
507
+ output_attentions=output_attentions,
508
+ use_cache=use_cache,
509
+ )
510
+
511
+ hidden_states = layer_outputs[0]
512
+
513
+ if use_cache:
514
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
515
+
516
+ if output_attentions:
517
+ all_self_attns += (layer_outputs[1],)
518
+
519
+ hidden_states = self.norm(hidden_states)
520
+
521
+ # add hidden states from the last decoder layer
522
+ if output_hidden_states:
523
+ all_hidden_states += (hidden_states,)
524
+
525
+ next_cache = next_decoder_cache if use_cache else None
526
+ if not return_dict:
527
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
528
+ return BaseModelOutputWithPast(
529
+ last_hidden_state=hidden_states,
530
+ past_key_values=next_cache,
531
+ hidden_states=all_hidden_states,
532
+ attentions=all_self_attns,
533
+ )
534
+
535
+
536
+ class YayiForCausalLM(YayiPreTrainedModel):
537
+ _tied_weights_keys = ["lm_head.weight"]
538
+
539
+ def __init__(self, config):
540
+ super().__init__(config)
541
+ self.model = YayiModel(config)
542
+
543
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
544
+
545
+ # Initialize weights and apply final processing
546
+ self.post_init()
547
+
548
+ def get_input_embeddings(self):
549
+ return self.model.embed_tokens
550
+
551
+ def set_input_embeddings(self, value):
552
+ self.model.embed_tokens = value
553
+
554
+ def get_output_embeddings(self):
555
+ return self.lm_head
556
+
557
+ def set_output_embeddings(self, new_embeddings):
558
+ self.lm_head = new_embeddings
559
+
560
+ def set_decoder(self, decoder):
561
+ self.model = decoder
562
+
563
+ def get_decoder(self):
564
+ return self.model
565
+
566
+ def forward(
567
+ self,
568
+ input_ids: torch.LongTensor = None,
569
+ attention_mask: Optional[torch.Tensor] = None,
570
+ position_ids: Optional[torch.LongTensor] = None,
571
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
572
+ inputs_embeds: Optional[torch.FloatTensor] = None,
573
+ labels: Optional[torch.LongTensor] = None,
574
+ use_cache: Optional[bool] = None,
575
+ output_attentions: Optional[bool] = None,
576
+ output_hidden_states: Optional[bool] = None,
577
+ return_dict: Optional[bool] = None,
578
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
579
+ r"""
580
+ Args:
581
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
582
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
583
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
584
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
585
+
586
+ Returns:
587
+
588
+ Example:
589
+
590
+ ```python
591
+ >>> from transformers import AutoTokenizer, AutoModelForCausalLM
592
+
593
+ >>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
594
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
595
+
596
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
597
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
598
+
599
+ >>> # Generate
600
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
601
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
602
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
603
+ ```"""
604
+
605
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
606
+ output_hidden_states = (
607
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
608
+ )
609
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
610
+
611
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
612
+ outputs = self.model(
613
+ input_ids=input_ids,
614
+ attention_mask=attention_mask,
615
+ position_ids=position_ids,
616
+ past_key_values=past_key_values,
617
+ inputs_embeds=inputs_embeds,
618
+ use_cache=use_cache,
619
+ output_attentions=output_attentions,
620
+ output_hidden_states=output_hidden_states,
621
+ return_dict=return_dict,
622
+ )
623
+
624
+ hidden_states = outputs[0]
625
+ logits = self.lm_head(hidden_states)
626
+
627
+ loss = None
628
+ if labels is not None:
629
+ # Shift so that tokens < n predict n
630
+ shift_logits = logits[..., :-1, :].contiguous()
631
+ shift_labels = labels[..., 1:].contiguous()
632
+ # Flatten the tokens
633
+ loss_fct = CrossEntropyLoss()
634
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
635
+ shift_labels = shift_labels.view(-1)
636
+ # Enable model parallelism
637
+ shift_labels = shift_labels.to(shift_logits.device)
638
+ loss = loss_fct(shift_logits, shift_labels)
639
+
640
+ if not return_dict:
641
+ output = (logits,) + outputs[1:]
642
+ return (loss,) + output if loss is not None else output
643
+
644
+ return CausalLMOutputWithPast(
645
+ loss=loss,
646
+ logits=logits,
647
+ past_key_values=outputs.past_key_values,
648
+ hidden_states=outputs.hidden_states,
649
+ attentions=outputs.attentions,
650
+ )
651
+
652
+ def prepare_inputs_for_generation(
653
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
654
+ ):
655
+ if past_key_values:
656
+ input_ids = input_ids[:, -1:]
657
+
658
+ position_ids = kwargs.get("position_ids", None)
659
+ if attention_mask is not None and position_ids is None:
660
+ # create position_ids on the fly for batch generation
661
+ position_ids = attention_mask.long().cumsum(-1) - 1
662
+ position_ids.masked_fill_(attention_mask == 0, 1)
663
+ if past_key_values:
664
+ position_ids = position_ids[:, -1].unsqueeze(-1)
665
+
666
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
667
+ if inputs_embeds is not None and past_key_values is None:
668
+ model_inputs = {"inputs_embeds": inputs_embeds}
669
+ else:
670
+ model_inputs = {"input_ids": input_ids}
671
+
672
+ model_inputs.update(
673
+ {
674
+ "position_ids": position_ids,
675
+ "past_key_values": past_key_values,
676
+ "use_cache": kwargs.get("use_cache"),
677
+ "attention_mask": attention_mask,
678
+ }
679
+ )
680
+ return model_inputs
681
+
682
+ @staticmethod
683
+ def _reorder_cache(past_key_values, beam_idx):
684
+ reordered_past = ()
685
+ for layer_past in past_key_values:
686
+ reordered_past += (
687
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
688
+ )
689
+ return reordered_past
pytorch_model-00001-of-00007.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:228e000a466fbe08e02a795f86ddf738fcc4bc3dd475f686869138df92b9ee75
3
+ size 9838690401
pytorch_model-00002-of-00007.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a553da624687b0bfed50704b233cfe1882b8e180e5e86eb2832c996ad7a1817a
3
+ size 9812603466
pytorch_model-00003-of-00007.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2711ee5fa83fd4a50e2c3d396911e455c227a4bf54ef97c60c9d4e4a0c313cca
3
+ size 9944723523
pytorch_model-00004-of-00007.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d7ec20dbc443baf46ecc8f52e078e1b7a84c0bb6bd1da4603e59eb81eb99101
3
+ size 9941511996
pytorch_model-00005-of-00007.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6761f33aaf34396f8e19bc8f48e34802e051b447b8e7e1100e462c6fafe3ba87
3
+ size 9812573864
pytorch_model-00006-of-00007.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:297493ee5de4b4d4533b5dc3d3332f13abca8313ff3462e6a874a29a196f9670
3
+ size 9812603318
pytorch_model-00007-of-00007.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cde545dc71a7407e6bb2f879b7475e5c7c7640db9fba990c1cd3530233aca245
3
+ size 1644212671
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,650 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 60806688768
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00007-of-00007.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00007.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00007.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00007.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00007.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00007.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00007.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00007.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00007.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00007.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00007.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00007.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00007.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00007.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00007.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00007.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00007.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00007.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00007.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00007.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00007.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00007.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00007.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00007.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00007.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00007.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00007.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00007.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
268
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
269
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
270
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
271
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
272
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
273
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
274
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
275
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
276
+ "model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00007.bin",
277
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
278
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
279
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
280
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
281
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
282
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
283
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
284
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
285
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
286
+ "model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00007.bin",
287
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
288
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
289
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
290
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
291
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
292
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
293
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
294
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
295
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
296
+ "model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00007.bin",
297
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
298
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
299
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
300
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
301
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
302
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
303
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
304
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
305
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
306
+ "model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00007.bin",
307
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
308
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
309
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
310
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
311
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
312
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
313
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
314
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
315
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
316
+ "model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00007.bin",
317
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
318
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
319
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
320
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
321
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
322
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
323
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
324
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
325
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
326
+ "model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00007.bin",
327
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
328
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
329
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
330
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
331
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
332
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
333
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
334
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
335
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
336
+ "model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00007.bin",
337
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
338
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
339
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
340
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
341
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
342
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
343
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
344
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
345
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
346
+ "model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00007.bin",
347
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
348
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
349
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
350
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
351
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
352
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
353
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
354
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
355
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
356
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00007.bin",
357
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
358
+ "model.layers.40.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
359
+ "model.layers.40.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
360
+ "model.layers.40.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
361
+ "model.layers.40.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
362
+ "model.layers.40.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
363
+ "model.layers.40.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
364
+ "model.layers.40.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
365
+ "model.layers.40.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
366
+ "model.layers.40.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00007.bin",
367
+ "model.layers.40.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
368
+ "model.layers.41.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
369
+ "model.layers.41.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
370
+ "model.layers.41.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
371
+ "model.layers.41.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
372
+ "model.layers.41.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
373
+ "model.layers.41.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
374
+ "model.layers.41.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
375
+ "model.layers.41.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
376
+ "model.layers.41.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00007.bin",
377
+ "model.layers.41.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
378
+ "model.layers.42.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
379
+ "model.layers.42.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
380
+ "model.layers.42.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
381
+ "model.layers.42.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
382
+ "model.layers.42.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
383
+ "model.layers.42.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
384
+ "model.layers.42.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
385
+ "model.layers.42.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
386
+ "model.layers.42.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00007.bin",
387
+ "model.layers.42.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
388
+ "model.layers.43.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
389
+ "model.layers.43.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
390
+ "model.layers.43.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
391
+ "model.layers.43.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
392
+ "model.layers.43.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
393
+ "model.layers.43.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
394
+ "model.layers.43.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
395
+ "model.layers.43.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
396
+ "model.layers.43.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00007.bin",
397
+ "model.layers.43.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
398
+ "model.layers.44.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
399
+ "model.layers.44.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
400
+ "model.layers.44.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
401
+ "model.layers.44.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
402
+ "model.layers.44.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
403
+ "model.layers.44.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
404
+ "model.layers.44.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
405
+ "model.layers.44.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
406
+ "model.layers.44.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00007.bin",
407
+ "model.layers.44.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
408
+ "model.layers.45.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
409
+ "model.layers.45.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
410
+ "model.layers.45.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
411
+ "model.layers.45.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
412
+ "model.layers.45.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
413
+ "model.layers.45.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
414
+ "model.layers.45.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
415
+ "model.layers.45.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
416
+ "model.layers.45.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00007.bin",
417
+ "model.layers.45.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
418
+ "model.layers.46.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
419
+ "model.layers.46.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
420
+ "model.layers.46.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
421
+ "model.layers.46.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
422
+ "model.layers.46.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
423
+ "model.layers.46.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
424
+ "model.layers.46.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
425
+ "model.layers.46.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
426
+ "model.layers.46.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00007.bin",
427
+ "model.layers.46.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
428
+ "model.layers.47.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
429
+ "model.layers.47.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
430
+ "model.layers.47.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
431
+ "model.layers.47.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
432
+ "model.layers.47.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
433
+ "model.layers.47.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
434
+ "model.layers.47.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
435
+ "model.layers.47.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
436
+ "model.layers.47.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00007.bin",
437
+ "model.layers.47.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
438
+ "model.layers.48.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
439
+ "model.layers.48.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
440
+ "model.layers.48.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
441
+ "model.layers.48.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
442
+ "model.layers.48.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
443
+ "model.layers.48.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
444
+ "model.layers.48.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
445
+ "model.layers.48.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
446
+ "model.layers.48.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00007.bin",
447
+ "model.layers.48.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
448
+ "model.layers.49.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
449
+ "model.layers.49.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
450
+ "model.layers.49.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
451
+ "model.layers.49.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
452
+ "model.layers.49.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
453
+ "model.layers.49.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
454
+ "model.layers.49.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
455
+ "model.layers.49.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
456
+ "model.layers.49.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00007.bin",
457
+ "model.layers.49.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
458
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
459
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
460
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
461
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
462
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
463
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
464
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
465
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
466
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00007.bin",
467
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
468
+ "model.layers.50.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
469
+ "model.layers.50.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
470
+ "model.layers.50.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
471
+ "model.layers.50.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
472
+ "model.layers.50.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
473
+ "model.layers.50.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
474
+ "model.layers.50.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
475
+ "model.layers.50.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
476
+ "model.layers.50.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00007.bin",
477
+ "model.layers.50.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
478
+ "model.layers.51.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
479
+ "model.layers.51.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
480
+ "model.layers.51.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
481
+ "model.layers.51.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
482
+ "model.layers.51.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
483
+ "model.layers.51.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
484
+ "model.layers.51.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
485
+ "model.layers.51.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
486
+ "model.layers.51.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00007.bin",
487
+ "model.layers.51.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
488
+ "model.layers.52.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
489
+ "model.layers.52.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
490
+ "model.layers.52.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
491
+ "model.layers.52.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
492
+ "model.layers.52.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
493
+ "model.layers.52.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
494
+ "model.layers.52.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
495
+ "model.layers.52.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
496
+ "model.layers.52.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00007.bin",
497
+ "model.layers.52.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
498
+ "model.layers.53.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
499
+ "model.layers.53.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
500
+ "model.layers.53.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
501
+ "model.layers.53.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
502
+ "model.layers.53.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
503
+ "model.layers.53.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
504
+ "model.layers.53.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
505
+ "model.layers.53.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
506
+ "model.layers.53.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00007.bin",
507
+ "model.layers.53.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
508
+ "model.layers.54.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
509
+ "model.layers.54.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
510
+ "model.layers.54.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
511
+ "model.layers.54.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
512
+ "model.layers.54.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
513
+ "model.layers.54.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
514
+ "model.layers.54.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
515
+ "model.layers.54.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
516
+ "model.layers.54.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00007.bin",
517
+ "model.layers.54.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
518
+ "model.layers.55.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
519
+ "model.layers.55.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
520
+ "model.layers.55.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
521
+ "model.layers.55.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
522
+ "model.layers.55.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
523
+ "model.layers.55.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
524
+ "model.layers.55.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
525
+ "model.layers.55.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
526
+ "model.layers.55.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00007.bin",
527
+ "model.layers.55.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
528
+ "model.layers.56.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
529
+ "model.layers.56.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
530
+ "model.layers.56.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
531
+ "model.layers.56.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
532
+ "model.layers.56.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
533
+ "model.layers.56.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
534
+ "model.layers.56.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
535
+ "model.layers.56.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
536
+ "model.layers.56.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00007.bin",
537
+ "model.layers.56.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
538
+ "model.layers.57.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
539
+ "model.layers.57.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
540
+ "model.layers.57.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
541
+ "model.layers.57.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
542
+ "model.layers.57.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
543
+ "model.layers.57.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
544
+ "model.layers.57.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
545
+ "model.layers.57.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
546
+ "model.layers.57.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00007.bin",
547
+ "model.layers.57.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
548
+ "model.layers.58.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
549
+ "model.layers.58.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
550
+ "model.layers.58.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
551
+ "model.layers.58.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
552
+ "model.layers.58.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
553
+ "model.layers.58.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
554
+ "model.layers.58.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
555
+ "model.layers.58.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
556
+ "model.layers.58.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00007.bin",
557
+ "model.layers.58.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
558
+ "model.layers.59.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
559
+ "model.layers.59.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
560
+ "model.layers.59.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
561
+ "model.layers.59.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
562
+ "model.layers.59.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
563
+ "model.layers.59.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
564
+ "model.layers.59.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
565
+ "model.layers.59.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
566
+ "model.layers.59.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00007.bin",
567
+ "model.layers.59.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
568
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
569
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
570
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
571
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
572
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
573
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
574
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
575
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
576
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00007.bin",
577
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
578
+ "model.layers.60.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
579
+ "model.layers.60.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
580
+ "model.layers.60.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
581
+ "model.layers.60.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
582
+ "model.layers.60.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
583
+ "model.layers.60.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
584
+ "model.layers.60.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
585
+ "model.layers.60.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
586
+ "model.layers.60.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00007.bin",
587
+ "model.layers.60.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
588
+ "model.layers.61.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
589
+ "model.layers.61.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
590
+ "model.layers.61.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
591
+ "model.layers.61.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
592
+ "model.layers.61.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
593
+ "model.layers.61.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
594
+ "model.layers.61.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
595
+ "model.layers.61.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
596
+ "model.layers.61.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00007.bin",
597
+ "model.layers.61.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
598
+ "model.layers.62.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
599
+ "model.layers.62.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
600
+ "model.layers.62.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
601
+ "model.layers.62.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
602
+ "model.layers.62.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
603
+ "model.layers.62.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
604
+ "model.layers.62.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
605
+ "model.layers.62.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
606
+ "model.layers.62.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00007.bin",
607
+ "model.layers.62.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
608
+ "model.layers.63.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
609
+ "model.layers.63.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
610
+ "model.layers.63.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
611
+ "model.layers.63.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
612
+ "model.layers.63.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
613
+ "model.layers.63.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
614
+ "model.layers.63.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
615
+ "model.layers.63.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
616
+ "model.layers.63.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00007.bin",
617
+ "model.layers.63.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
618
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
619
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
620
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
621
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
622
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
623
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
624
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
625
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
626
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00007.bin",
627
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
628
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
629
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
630
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
631
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
632
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
633
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
634
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
635
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
636
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00007.bin",
637
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
638
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
639
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
640
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
641
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
642
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
643
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
644
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
645
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
646
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00007.bin",
647
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
648
+ "model.norm.weight": "pytorch_model-00007-of-00007.bin"
649
+ }
650
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": true
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenization_yayi.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+
21
+ import os
22
+ from shutil import copyfile
23
+ from typing import Any, Dict, List, Optional, Tuple
24
+
25
+ import sentencepiece as spm
26
+
27
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
28
+ from transformers.utils import logging
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
34
+
35
+ PRETRAINED_VOCAB_FILES_MAP = {
36
+ "vocab_file": {},
37
+ "tokenizer_file": {},
38
+ }
39
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
40
+
41
+
42
+ class YayiTokenizer(PreTrainedTokenizer):
43
+ """
44
+ Construct a Yayi tokenizer. Based on byte-level Byte-Pair-Encoding.
45
+
46
+ Args:
47
+ vocab_file (`str`):
48
+ Path to the vocabulary file.
49
+ """
50
+
51
+ vocab_files_names = VOCAB_FILES_NAMES
52
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
53
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
54
+ model_input_names = ["input_ids", "attention_mask"]
55
+
56
+ def __init__(
57
+ self,
58
+ vocab_file,
59
+ unk_token="<unk>",
60
+ bos_token="<s>",
61
+ eos_token="</s>",
62
+ pad_token="<pad>",
63
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
64
+ add_bos_token=True,
65
+ add_eos_token=False,
66
+ clean_up_tokenization_spaces=False,
67
+ **kwargs,
68
+ ):
69
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
70
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
71
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
72
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
73
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
74
+ super().__init__(
75
+ bos_token=bos_token,
76
+ eos_token=eos_token,
77
+ unk_token=unk_token,
78
+ pad_token=pad_token,
79
+ add_bos_token=add_bos_token,
80
+ add_eos_token=add_eos_token,
81
+ sp_model_kwargs=self.sp_model_kwargs,
82
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
83
+ **kwargs,
84
+ )
85
+ self.vocab_file = vocab_file
86
+ self.add_bos_token = add_bos_token
87
+ self.add_eos_token = add_eos_token
88
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
89
+ self.sp_model.Load(vocab_file)
90
+
91
+ def __getstate__(self):
92
+ state = self.__dict__.copy()
93
+ state["sp_model"] = None
94
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
95
+ return state
96
+
97
+ def __setstate__(self, d):
98
+ self.__dict__ = d
99
+ # self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
100
+ # self.sp_model.Load(self.vocab_file)
101
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
102
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
103
+
104
+ @property
105
+ def vocab_size(self):
106
+ """Returns vocab size"""
107
+ return self.sp_model.get_piece_size()
108
+
109
+ def get_vocab(self):
110
+ """Returns vocab as a dict"""
111
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
112
+ vocab.update(self.added_tokens_encoder)
113
+ return vocab
114
+
115
+ def _tokenize(self, text):
116
+ """Returns a tokenized string."""
117
+ return self.sp_model.encode(text, out_type=str)
118
+
119
+ def _convert_token_to_id(self, token):
120
+ """Converts a token (str) in an id using the vocab."""
121
+ return self.sp_model.piece_to_id(token)
122
+
123
+ def _convert_id_to_token(self, index):
124
+ """Converts an index (integer) in a token (str) using the vocab."""
125
+ token = self.sp_model.IdToPiece(index)
126
+ return token
127
+
128
+ def convert_tokens_to_string(self, tokens):
129
+ """Converts a sequence of tokens (string) in a single string."""
130
+ current_sub_tokens = []
131
+ out_string = ""
132
+ prev_is_special = False
133
+ for i, token in enumerate(tokens):
134
+ # make sure that special tokens are not decoded using sentencepiece model
135
+ if token in self.all_special_tokens:
136
+ if not prev_is_special and i != 0:
137
+ out_string += " "
138
+ out_string += self.sp_model.decode(current_sub_tokens) + token
139
+ prev_is_special = True
140
+ current_sub_tokens = []
141
+ else:
142
+ current_sub_tokens.append(token)
143
+ prev_is_special = False
144
+ out_string += self.sp_model.decode(current_sub_tokens)
145
+ return out_string
146
+
147
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
148
+ """
149
+ Save the vocabulary and special tokens file to a directory.
150
+
151
+ Args:
152
+ save_directory (`str`):
153
+ The directory in which to save the vocabulary.
154
+
155
+ Returns:
156
+ `Tuple(str)`: Paths to the files saved.
157
+ """
158
+ if not os.path.isdir(save_directory):
159
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
160
+ return
161
+ out_vocab_file = os.path.join(
162
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
163
+ )
164
+
165
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
166
+ copyfile(self.vocab_file, out_vocab_file)
167
+ elif not os.path.isfile(self.vocab_file):
168
+ with open(out_vocab_file, "wb") as fi:
169
+ content_spiece_model = self.sp_model.serialized_model_proto()
170
+ fi.write(content_spiece_model)
171
+
172
+ return (out_vocab_file,)
173
+
174
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
175
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
176
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
177
+
178
+ output = bos_token_id + token_ids_0 + eos_token_id
179
+
180
+ if token_ids_1 is not None:
181
+ output = output + bos_token_id + token_ids_1 + eos_token_id
182
+
183
+ return output
184
+
185
+ def get_special_tokens_mask(
186
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
187
+ ) -> List[int]:
188
+ """
189
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
190
+ special tokens using the tokenizer `prepare_for_model` method.
191
+
192
+ Args:
193
+ token_ids_0 (`List[int]`):
194
+ List of IDs.
195
+ token_ids_1 (`List[int]`, *optional*):
196
+ Optional second list of IDs for sequence pairs.
197
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
198
+ Whether or not the token list is already formatted with special tokens for the model.
199
+
200
+ Returns:
201
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
202
+ """
203
+ if already_has_special_tokens:
204
+ return super().get_special_tokens_mask(
205
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
206
+ )
207
+
208
+ bos_token_id = [1] if self.add_bos_token else []
209
+ eos_token_id = [1] if self.add_eos_token else []
210
+
211
+ if token_ids_1 is None:
212
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
213
+ return (
214
+ bos_token_id
215
+ + ([0] * len(token_ids_0))
216
+ + eos_token_id
217
+ + bos_token_id
218
+ + ([0] * len(token_ids_1))
219
+ + eos_token_id
220
+ )
221
+
222
+ def create_token_type_ids_from_sequences(
223
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
224
+ ) -> List[int]:
225
+ """
226
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
227
+ sequence pair mask has the following format:
228
+
229
+ ```
230
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
231
+ | first sequence | second sequence |
232
+ ```
233
+
234
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
235
+
236
+ Args:
237
+ token_ids_0 (`List[int]`):
238
+ List of ids.
239
+ token_ids_1 (`List[int]`, *optional*):
240
+ Optional second list of IDs for sequence pairs.
241
+
242
+ Returns:
243
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
244
+ """
245
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
246
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
247
+
248
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
249
+
250
+ if token_ids_1 is not None:
251
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
252
+
253
+ return output
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f35a9d7c9fc9537677d460534cd741ee0587680c54b5fc411befea8c0568852
3
+ size 1531242
tokenizer_config.json ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_yayi.YayiTokenizer",
7
+ null
8
+ ]
9
+ },
10
+ "bos_token": {
11
+ "__type": "AddedToken",
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": true
17
+ },
18
+ "clean_up_tokenization_spaces": false,
19
+ "eos_token": {
20
+ "__type": "AddedToken",
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": true
26
+ },
27
+ "model_max_length": 1000000000000000019884624838656,
28
+ "pad_token": {
29
+ "__type": "AddedToken",
30
+ "content": "<pad>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": true
35
+ },
36
+ "sp_model_kwargs": {},
37
+ "tokenizer_class": "YayiTokenizer",
38
+ "unk_token": {
39
+ "__type": "AddedToken",
40
+ "content": "<unk>",
41
+ "lstrip": false,
42
+ "normalized": true,
43
+ "rstrip": false,
44
+ "single_word": true
45
+ }
46
+ }