FAPM / evaluate.py
wenkai's picture
Upload 37 files
994daed verified
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import argparse
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import lavis.tasks as tasks
from lavis.common.config import Config
from lavis.common.dist_utils import get_rank, init_distributed_mode
from lavis.common.logger import setup_logger
from lavis.common.optims import (
LinearWarmupCosineLRScheduler,
LinearWarmupStepLRScheduler,
)
from lavis.common.utils import now
# imports modules for registration
from lavis.datasets.builders import *
from lavis.models import *
from lavis.processors import *
from lavis.runners.runner_base import RunnerBase
from lavis.tasks import *
def parse_args():
parser = argparse.ArgumentParser(description="Training")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
# if 'LOCAL_RANK' not in os.environ:
# os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
def main():
# allow auto-dl completes on main process without timeout when using NCCL backend.
# os.environ["NCCL_BLOCKING_WAIT"] = "1"
# set before init_distributed_mode() to ensure the same job_id shared across all ranks.
job_id = now()
cfg = Config(parse_args())
init_distributed_mode(cfg.run_cfg)
setup_seeds(cfg)
# set after init_distributed_mode() to only log on master.
setup_logger()
cfg.pretty_print()
task = tasks.setup_task(cfg)
datasets = task.build_datasets(cfg)
model = task.build_model(cfg)
# model.generate({"image": ['MMSKLGVLLTICLLLFPLTAVPLDGDQPADQPAERKQNEQHPLFDQKRGCCRWPCPSRCGMARCCSS','MMSKQPAERKQNEQHPLFDQKRGCCRWPCPSRCGMARCCSS']})
runner = RunnerBase(cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets)
runner.evaluate(skip_reload=True)
if __name__ == "__main__":
main()