File size: 1,210 Bytes
0ec82cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from transformers import PretrainedConfig
from typing import List


class ResnetConfig(PretrainedConfig):
    model_type = "wenming_resnet"

    def __init__(
            self,
            block_type = 'bottleneck',
            layers: list[int] = [3, 4, 6, 3],
            num_classes: int = 1000,
            input_channels: int = 3,
            cardinality: int = 1,
            base_width: int = 64,
            stem_width: int = 64,
            stem_type: str = "",
             avg_down: bool = False,
              **kwargs,
    ):
        if block_type not in ["basic", "bottleneck"]:
            raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.")
        if stem_type not in ["", "deep", "deep-tiered"]:
            raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.")
        self.block_type = block_type
        self.layers = layers
        self.num_classes = num_classes
        self.input_channels = input_channels
        self.cardinality = cardinality
        self.base_width = base_width
        self.stem_width = stem_width
        self.stem_type = stem_type
        self.avg_down = avg_down
        super().__init__(**kwargs)