wenmingface commited on
Commit
e356c21
1 Parent(s): 1b0eea5

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -136.12 +/- 53.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bdd86344c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bdd86344ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bdd86344d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bdd86344dc0>", "_build": "<function ActorCriticPolicy._build at 0x7bdd86344e50>", "forward": "<function ActorCriticPolicy.forward at 0x7bdd86344ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bdd86344f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bdd86345000>", "_predict": "<function ActorCriticPolicy._predict at 0x7bdd86345090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bdd86345120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bdd863451b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bdd86345240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bdd862f2200>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 229376, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697486329758184202, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2lgbzQA7I/QvGAvnZSR77oX+A6yNhZvQAAAAAAAAAAFdacvgkO7T6mxEy9sXTVvtVVhT0QicY8AAAAAAAAAACaMLM8OrawPxK0OT/34Oe+Uk3OvGUFFb4AAAAAAAAAAGA7Kz8/Em++2gpLPaPO17tTAvw9QR01PQAAgD8AAIA/kw0fPq98Qj8gPwq9st/zvih9BruWSZe9AAAAAAAAAACaZii+4SWuO9TTO71XtUi91WKcPB3wL7wAAAAAAAAAAGbrPz1m8YM/JdyvvSl2PL4cZpg8RGofvgAAAAAAAAAAzQZRPtbjjT/TdQE+0kxAvi+xXD03qqW9AAAAAAAAAAAzR6Y87PZnPmWAmr6LYra+YDCNPKgyAb4AAAAAAAAAAG0rWj7+AoQ/BgziPrYkv74pnTA+92gpPgAAAAAAAAAAmjC6vexN8Tqby9u8qS4VvcrDbjw/UQw9AAAAAAAAAAD96TU/c7V7vhOcDTs6Dva4VaqevbCddboAAIA/AACAP21+fD5AKB0/ciS9PG2iub4Jres9DNU6vQAAAAAAAAAAGnrlPUsDJj9K8Ng8MTuTvtR7FTzet6S9AAAAAAAAAACNf789yOH7OypfFL1uaYE9DEpavKykHTsAAAAAAAAAAMAx8r3fnJk/IXgSv9Z2576sdKc7Bt7gvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwAyYxL0z0pWMAWyUS7+MAXSUR0BwTYRbr1M/dX2UKGgGR0AwCixFAmiQaAdLtWgIR0BwTgcU/OdHdX2UKGgGR8BOiEH2RJVbaAdLxGgIR0BwT1X7tRekdX2UKGgGR8BFsW0iQkonaAdLwGgIR0BxtXStvGZNdX2UKGgGR0A0pMYdhiLEaAdL3mgIR0BxuRjriVB2dX2UKGgGR8BGdhJAdGRWaAdLxGgIR0BxuneJpFkQdX2UKGgGR0AvtNDc/MW5aAdLomgIR0Bxva1hLGrCdX2UKGgGR8A9hWgezUqhaAdL1WgIR0Bxvb6TGHYZdX2UKGgGR8BrSIsd1dPdaAdN0gJoCEdAcb8s6JZW73V9lChoBkdANxfLcKw6hmgHS7FoCEdAcb9wOvt+kXV9lChoBkdANvbgGbCrLmgHS4loCEdAcb/czZYgaHV9lChoBkfAMNtUCJXQt2gHS4VoCEdAccPS26TW5HV9lChoBkdAECQSSNfgJmgHS+ZoCEdAccWijtXxOXV9lChoBkfAJn9i+cpb2WgHS9VoCEdAccYwYLsru3V9lChoBkdAOzNWIXTEzmgHS6toCEdAccm9itq59XV9lChoBkfANXPViF0xM2gHS7hoCEdAcc518LKFI3V9lChoBkfAOmsHObAk9mgHS7FoCEdAcc5m2LHdXXV9lChoBkfAAnVmz0HyE2gHS9toCEdAcdCbPQfIS3V9lChoBkc/7GV3Ux20RmgHTQcBaAhHQHHV86eXiR51fZQoaAZHP8DY02tMfzVoB0ubaAhHQHHXhVZLZjB1fZQoaAZHv8DjzZpSJj5oB0t1aAhHQHHYmQ4jrzJ1fZQoaAZHQDICavzOHFhoB000AWgIR0Bx27RUm2LHdX2UKGgGR8A/tL2YfGMoaAdLxmgIR0Bx26CnP3SKdX2UKGgGR0AsGRJVbRnfaAdLzmgIR0Bx3LK3d9DydX2UKGgGR8A63iSJTER8aAdL1mgIR0Bx336ZYxL1dX2UKGgGR8BGoQrDqGDdaAdLuGgIR0Bx4Q2dd3SsdX2UKGgGR8A4HdZaFEiMaAdL1GgIR0Bx6PSro4dZdX2UKGgGR8A6FZAIIF/yaAdLq2gIR0Bx6tJDmbLEdX2UKGgGR0An2ZWq94/vaAdLqmgIR0Bx7NnBciW3dX2UKGgGR8BAr8Gkep4saAdL0mgIR0Bx7Rew9q1xdX2UKGgGR0AmF0YCQtBfaAdLz2gIR0Bx8eW8h9srdX2UKGgGR0ApPCoCMgloaAdLxWgIR0Bx/azt1IRRdX2UKGgGR8AU5OuaF23baAdL72gIR0ByDUqz7di2dX2UKGgGR8AoRmEoOQQuaAdLimgIR0ByDYMNMGordX2UKGgGR0BBm6akRBeHaAdLnGgIR0ByDySs8xKydX2UKGgGRz/wW8Zk078vaAdL8GgIR0ByD3KyOaOQdX2UKGgGR8AzijGDL8rJaAdNCwFoCEdAchSbobGWEHV9lChoBkdANw46r/82rGgHS/9oCEdAchhcC5mRNnV9lChoBkfAS+9NJvo/zWgHTQEBaAhHQHIbLw4KhL51fZQoaAZHwGOOPy9VWCFoB01CAWgIR0ByHC+CbtqpdX2UKGgGR8ARDyMDOkckaAdLzGgIR0ByJM7jkuHvdX2UKGgGR8BATIuwosqbaAdLs2gIR0ByK9Gtp22YdX2UKGgGR0Ahe/5ckdFOaAdLmGgIR0ByNaJdjXnRdX2UKGgGR8AwBo+OfdylaAdNKQFoCEdAcjiSBbwBo3V9lChoBkfAQkmRs/IKdGgHS8hoCEdAckZRDCxeLXV9lChoBkfAIcIZydWhiGgHS+xoCEdAck/Ehq0ty3V9lChoBkdAODRqKxcE/2gHS8VoCEdAclOWaMJhOXV9lChoBkfANGKslsxfwGgHTRoBaAhHQHJicU7CBPN1fZQoaAZHwCCYI4VARkFoB0u6aAhHQHJo+xrzoU11fZQoaAZHwDXLDm8ujAVoB0vtaAhHQHJtQPmPo3d1fZQoaAZHwDTPDNyHVPNoB0vuaAhHQHJ4DCcf/3p1fZQoaAZHwFIiiuuA7PpoB0vOaAhHQHJ7xNZeRgZ1fZQoaAZHwCzd+CsfaHtoB0vVaAhHQHKFwqy4Wk91fZQoaAZHwDzRLEk0JnhoB0vBaAhHQHKUpN47ihp1fZQoaAZHwEGnUKiO/+NoB0uqaAhHQHKbFfzBhx51fZQoaAZHQFTuP0I1LrZoB03oA2gIR0BynIfms/6gdX2UKGgGR0BJi2VVxS5zaAdN6ANoCEdAcp8NDtw71nV9lChoBke/8H8UEgW8AmgHS5VoCEdAcqEOzIFNcnV9lChoBkdAR+/ZK3/gi2gHTegDaAhHQHKnUs8PnSx1fZQoaAZHP/DCFbmlqJxoB0vtaAhHQHK3DwMH8j11fZQoaAZHQDv+ufVZs9BoB0uJaAhHQHK9dYSxqwh1fZQoaAZHwGOpYnOSntRoB011AmgIR0Byv7VZs9B9dX2UKGgGR8AzSY02tMfzaAdLqWgIR0BywpB2OhkBdX2UKGgGR0BCm4oZydWiaAdLh2gIR0ByxSg6EJ0GdX2UKGgGR0BJIUxM36yjaAdN6ANoCEdAcsffDUExI3V9lChoBkfAOCG65Gz8g2gHS/JoCEdAcswcGC7K73V9lChoBkfAVCNmFrVOK2gHS+5oCEdAcs9hUzbeuXV9lChoBkfANa2hIvrWy2gHS6doCEdActmt6ol2NnV9lChoBkdAUMpeMQ2/BWgHTegDaAhHQHLe4uXeFcp1fZQoaAZHv+TxLCemNzdoB0uxaAhHQHLhd/z8P4F1fZQoaAZHQB5BDst03fhoB0uaaAhHQHLrtXLeQ+51fZQoaAZHwELS5f+jua5oB0ujaAhHQHLy6vA44qB1fZQoaAZHQCcDoMa0hNdoB0udaAhHQHMOfY8Md951fZQoaAZHQFnVVpsXSBtoB03oA2gIR0BzElStNi6QdX2UKGgGR0BWufTodMkAaAdN6ANoCEdAcx5tXgccVHV9lChoBkdAEjKzRhMJyGgHTQIBaAhHQHMp3QhOgxt1fZQoaAZHQEzWjHGS6lNoB03oA2gIR0BzL32h7E5ydX2UKGgGR0AVeAqd6LOzaAdL1GgIR0BzPvWvr4WUdX2UKGgGR0AR+5Dqnm7raAdLlGgIR0BzRP58BuGcdX2UKGgGR8BQY305EMLGaAdNCwFoCEdAc0gYT0xubnV9lChoBkfAU6AiX6ZYxWgHTUEBaAhHQHNJ4EwFkhB1fZQoaAZHwC1/L3bmEGtoB0u1aAhHQHNK+LFXJYF1fZQoaAZHQCN3kgfU4JhoB03oA2gIR0BzWzvPTodNdX2UKGgGR8Agf9CNS619aAdL2WgIR0BzXaqlxffGdX2UKGgGR8BRkg9zOopAaAdLjGgIR0BzYgHdGiHqdX2UKGgGR8BMS9RJmNBGaAdLzmgIR0BzYrgk1MufdX2UKGgGR0BYQKgqVhTgaAdN6ANoCEdAc2/fDUExI3V9lChoBkdAQbmBlMAWBWgHS6ZoCEdAc3GJWvKU3XV9lChoBkdAPM2f029+PWgHTQgBaAhHQHNz+Gj9GZx1fZQoaAZHQDyUiQkona5oB0u7aAhHQHN1RV+7UXp1fZQoaAZHQDZbqptJnQJoB0vcaAhHQHN7CmIj4Yd1fZQoaAZHwFRwGFSKm9BoB0vpaAhHQHN7x8hLXcx1fZQoaAZHQFnYOjqOcUdoB03oA2gIR0BzibGOuJUHdX2UKGgGR8BZ0UojOcDsaAdLwWgIR0Bzijsqril0dX2UKGgGR8BCs5UcXFcZaAdLX2gIR0BzixEORT0hdX2UKGgGR0BBgpp35eqraAdLyWgIR0BzkBweeWfLdX2UKGgGR8Ap5icXm/34aAdL12gIR0BzlCISDh99dX2UKGgGR8AyNposZpBYaAdNEwFoCEdAc5sI1tO2zHV9lChoBkfARmRMg2ZRbmgHS7loCEdAc56uAZsKs3V9lChoBkdAMoyncclw+GgHS5poCEdAc59VuJk5InVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (207 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -136.12358959204283, "std_reward": 53.13969174022839, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-16T20:08:53.146716"}
weming_PPO_LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3bc12b95d13295b65f5c35233f695b4ce5bb57fb4bdd0a943f91fe524204d02e
3
+ size 146653
weming_PPO_LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
weming_PPO_LunarLander/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7bdd86344c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bdd86344ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bdd86344d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bdd86344dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7bdd86344e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7bdd86344ee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bdd86344f70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bdd86345000>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7bdd86345090>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bdd86345120>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bdd863451b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bdd86345240>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7bdd862f2200>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 229376,
25
+ "_total_timesteps": 200000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1697486329758184202,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2lgbzQA7I/QvGAvnZSR77oX+A6yNhZvQAAAAAAAAAAFdacvgkO7T6mxEy9sXTVvtVVhT0QicY8AAAAAAAAAACaMLM8OrawPxK0OT/34Oe+Uk3OvGUFFb4AAAAAAAAAAGA7Kz8/Em++2gpLPaPO17tTAvw9QR01PQAAgD8AAIA/kw0fPq98Qj8gPwq9st/zvih9BruWSZe9AAAAAAAAAACaZii+4SWuO9TTO71XtUi91WKcPB3wL7wAAAAAAAAAAGbrPz1m8YM/JdyvvSl2PL4cZpg8RGofvgAAAAAAAAAAzQZRPtbjjT/TdQE+0kxAvi+xXD03qqW9AAAAAAAAAAAzR6Y87PZnPmWAmr6LYra+YDCNPKgyAb4AAAAAAAAAAG0rWj7+AoQ/BgziPrYkv74pnTA+92gpPgAAAAAAAAAAmjC6vexN8Tqby9u8qS4VvcrDbjw/UQw9AAAAAAAAAAD96TU/c7V7vhOcDTs6Dva4VaqevbCddboAAIA/AACAP21+fD5AKB0/ciS9PG2iub4Jres9DNU6vQAAAAAAAAAAGnrlPUsDJj9K8Ng8MTuTvtR7FTzet6S9AAAAAAAAAACNf789yOH7OypfFL1uaYE9DEpavKykHTsAAAAAAAAAAMAx8r3fnJk/IXgSv9Z2576sdKc7Bt7gvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.1468799999999999,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwAyYxL0z0pWMAWyUS7+MAXSUR0BwTYRbr1M/dX2UKGgGR0AwCixFAmiQaAdLtWgIR0BwTgcU/OdHdX2UKGgGR8BOiEH2RJVbaAdLxGgIR0BwT1X7tRekdX2UKGgGR8BFsW0iQkonaAdLwGgIR0BxtXStvGZNdX2UKGgGR0A0pMYdhiLEaAdL3mgIR0BxuRjriVB2dX2UKGgGR8BGdhJAdGRWaAdLxGgIR0BxuneJpFkQdX2UKGgGR0AvtNDc/MW5aAdLomgIR0Bxva1hLGrCdX2UKGgGR8A9hWgezUqhaAdL1WgIR0Bxvb6TGHYZdX2UKGgGR8BrSIsd1dPdaAdN0gJoCEdAcb8s6JZW73V9lChoBkdANxfLcKw6hmgHS7FoCEdAcb9wOvt+kXV9lChoBkdANvbgGbCrLmgHS4loCEdAcb/czZYgaHV9lChoBkfAMNtUCJXQt2gHS4VoCEdAccPS26TW5HV9lChoBkdAECQSSNfgJmgHS+ZoCEdAccWijtXxOXV9lChoBkfAJn9i+cpb2WgHS9VoCEdAccYwYLsru3V9lChoBkdAOzNWIXTEzmgHS6toCEdAccm9itq59XV9lChoBkfANXPViF0xM2gHS7hoCEdAcc518LKFI3V9lChoBkfAOmsHObAk9mgHS7FoCEdAcc5m2LHdXXV9lChoBkfAAnVmz0HyE2gHS9toCEdAcdCbPQfIS3V9lChoBkc/7GV3Ux20RmgHTQcBaAhHQHHV86eXiR51fZQoaAZHP8DY02tMfzVoB0ubaAhHQHHXhVZLZjB1fZQoaAZHv8DjzZpSJj5oB0t1aAhHQHHYmQ4jrzJ1fZQoaAZHQDICavzOHFhoB000AWgIR0Bx27RUm2LHdX2UKGgGR8A/tL2YfGMoaAdLxmgIR0Bx26CnP3SKdX2UKGgGR0AsGRJVbRnfaAdLzmgIR0Bx3LK3d9DydX2UKGgGR8A63iSJTER8aAdL1mgIR0Bx336ZYxL1dX2UKGgGR8BGoQrDqGDdaAdLuGgIR0Bx4Q2dd3SsdX2UKGgGR8A4HdZaFEiMaAdL1GgIR0Bx6PSro4dZdX2UKGgGR8A6FZAIIF/yaAdLq2gIR0Bx6tJDmbLEdX2UKGgGR0An2ZWq94/vaAdLqmgIR0Bx7NnBciW3dX2UKGgGR8BAr8Gkep4saAdL0mgIR0Bx7Rew9q1xdX2UKGgGR0AmF0YCQtBfaAdLz2gIR0Bx8eW8h9srdX2UKGgGR0ApPCoCMgloaAdLxWgIR0Bx/azt1IRRdX2UKGgGR8AU5OuaF23baAdL72gIR0ByDUqz7di2dX2UKGgGR8AoRmEoOQQuaAdLimgIR0ByDYMNMGordX2UKGgGR0BBm6akRBeHaAdLnGgIR0ByDySs8xKydX2UKGgGRz/wW8Zk078vaAdL8GgIR0ByD3KyOaOQdX2UKGgGR8AzijGDL8rJaAdNCwFoCEdAchSbobGWEHV9lChoBkdANw46r/82rGgHS/9oCEdAchhcC5mRNnV9lChoBkfAS+9NJvo/zWgHTQEBaAhHQHIbLw4KhL51fZQoaAZHwGOOPy9VWCFoB01CAWgIR0ByHC+CbtqpdX2UKGgGR8ARDyMDOkckaAdLzGgIR0ByJM7jkuHvdX2UKGgGR8BATIuwosqbaAdLs2gIR0ByK9Gtp22YdX2UKGgGR0Ahe/5ckdFOaAdLmGgIR0ByNaJdjXnRdX2UKGgGR8AwBo+OfdylaAdNKQFoCEdAcjiSBbwBo3V9lChoBkfAQkmRs/IKdGgHS8hoCEdAckZRDCxeLXV9lChoBkfAIcIZydWhiGgHS+xoCEdAck/Ehq0ty3V9lChoBkdAODRqKxcE/2gHS8VoCEdAclOWaMJhOXV9lChoBkfANGKslsxfwGgHTRoBaAhHQHJicU7CBPN1fZQoaAZHwCCYI4VARkFoB0u6aAhHQHJo+xrzoU11fZQoaAZHwDXLDm8ujAVoB0vtaAhHQHJtQPmPo3d1fZQoaAZHwDTPDNyHVPNoB0vuaAhHQHJ4DCcf/3p1fZQoaAZHwFIiiuuA7PpoB0vOaAhHQHJ7xNZeRgZ1fZQoaAZHwCzd+CsfaHtoB0vVaAhHQHKFwqy4Wk91fZQoaAZHwDzRLEk0JnhoB0vBaAhHQHKUpN47ihp1fZQoaAZHwEGnUKiO/+NoB0uqaAhHQHKbFfzBhx51fZQoaAZHQFTuP0I1LrZoB03oA2gIR0BynIfms/6gdX2UKGgGR0BJi2VVxS5zaAdN6ANoCEdAcp8NDtw71nV9lChoBke/8H8UEgW8AmgHS5VoCEdAcqEOzIFNcnV9lChoBkdAR+/ZK3/gi2gHTegDaAhHQHKnUs8PnSx1fZQoaAZHP/DCFbmlqJxoB0vtaAhHQHK3DwMH8j11fZQoaAZHQDv+ufVZs9BoB0uJaAhHQHK9dYSxqwh1fZQoaAZHwGOpYnOSntRoB011AmgIR0Byv7VZs9B9dX2UKGgGR8AzSY02tMfzaAdLqWgIR0BywpB2OhkBdX2UKGgGR0BCm4oZydWiaAdLh2gIR0ByxSg6EJ0GdX2UKGgGR0BJIUxM36yjaAdN6ANoCEdAcsffDUExI3V9lChoBkfAOCG65Gz8g2gHS/JoCEdAcswcGC7K73V9lChoBkfAVCNmFrVOK2gHS+5oCEdAcs9hUzbeuXV9lChoBkfANa2hIvrWy2gHS6doCEdActmt6ol2NnV9lChoBkdAUMpeMQ2/BWgHTegDaAhHQHLe4uXeFcp1fZQoaAZHv+TxLCemNzdoB0uxaAhHQHLhd/z8P4F1fZQoaAZHQB5BDst03fhoB0uaaAhHQHLrtXLeQ+51fZQoaAZHwELS5f+jua5oB0ujaAhHQHLy6vA44qB1fZQoaAZHQCcDoMa0hNdoB0udaAhHQHMOfY8Md951fZQoaAZHQFnVVpsXSBtoB03oA2gIR0BzElStNi6QdX2UKGgGR0BWufTodMkAaAdN6ANoCEdAcx5tXgccVHV9lChoBkdAEjKzRhMJyGgHTQIBaAhHQHMp3QhOgxt1fZQoaAZHQEzWjHGS6lNoB03oA2gIR0BzL32h7E5ydX2UKGgGR0AVeAqd6LOzaAdL1GgIR0BzPvWvr4WUdX2UKGgGR0AR+5Dqnm7raAdLlGgIR0BzRP58BuGcdX2UKGgGR8BQY305EMLGaAdNCwFoCEdAc0gYT0xubnV9lChoBkfAU6AiX6ZYxWgHTUEBaAhHQHNJ4EwFkhB1fZQoaAZHwC1/L3bmEGtoB0u1aAhHQHNK+LFXJYF1fZQoaAZHQCN3kgfU4JhoB03oA2gIR0BzWzvPTodNdX2UKGgGR8Agf9CNS619aAdL2WgIR0BzXaqlxffGdX2UKGgGR8BRkg9zOopAaAdLjGgIR0BzYgHdGiHqdX2UKGgGR8BMS9RJmNBGaAdLzmgIR0BzYrgk1MufdX2UKGgGR0BYQKgqVhTgaAdN6ANoCEdAc2/fDUExI3V9lChoBkdAQbmBlMAWBWgHS6ZoCEdAc3GJWvKU3XV9lChoBkdAPM2f029+PWgHTQgBaAhHQHNz+Gj9GZx1fZQoaAZHQDyUiQkona5oB0u7aAhHQHN1RV+7UXp1fZQoaAZHQDZbqptJnQJoB0vcaAhHQHN7CmIj4Yd1fZQoaAZHwFRwGFSKm9BoB0vpaAhHQHN7x8hLXcx1fZQoaAZHQFnYOjqOcUdoB03oA2gIR0BzibGOuJUHdX2UKGgGR8BZ0UojOcDsaAdLwWgIR0Bzijsqril0dX2UKGgGR8BCs5UcXFcZaAdLX2gIR0BzixEORT0hdX2UKGgGR0BBgpp35eqraAdLyWgIR0BzkBweeWfLdX2UKGgGR8Ap5icXm/34aAdL12gIR0BzlCISDh99dX2UKGgGR8AyNposZpBYaAdNEwFoCEdAc5sI1tO2zHV9lChoBkfARmRMg2ZRbmgHS7loCEdAc56uAZsKs3V9lChoBkdAMoyncclw+GgHS5poCEdAc59VuJk5InVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 70,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
weming_PPO_LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e05acbfdd95d786b3880816cac81bbd72781d722bc64956135cd645303f5f2a
3
+ size 87929
weming_PPO_LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e506983ddcf118e7619a6abb2bee0959396c775b82d713cf1597d35f3916e4b3
3
+ size 43329
weming_PPO_LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
weming_PPO_LunarLander/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2