--- language: - zh license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer datasets: - whucedar/datasets_stt_2 metrics: - wer model-index: - name: zh-CN-model-medium-3 - whucedar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: zh-CN type: whucedar/datasets_stt_2 args: 'config: zh, split: test' metrics: - name: Wer type: wer value: 92.0589784096893 --- # zh-CN-model-medium-3 - whucedar This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the zh-CN dataset. It achieves the following results on the evaluation set: - Loss: 0.2745 - Wer: 92.0590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2079 | 0.8306 | 1000 | 0.2799 | 78.5571 | | 0.0942 | 1.6611 | 2000 | 0.2712 | 76.6719 | | 0.0291 | 2.4917 | 3000 | 0.2717 | 85.0026 | | 0.0069 | 3.3223 | 4000 | 0.2745 | 92.0590 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1