--- language: - zh license: apache-2.0 base_model: openai/whisper-medium tags: - hf-asr-leaderboard - generated_from_trainer datasets: - whucedar/zh-CN metrics: - wer model-index: - name: zh-CN-model-medium - whucedar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: zh-CN type: whucedar/zh-CN args: 'config: zh, split: test' metrics: - name: Wer type: wer value: 517.7099236641221 --- # zh-CN-model-medium - whucedar This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the zh-CN dataset. It achieves the following results on the evaluation set: - Loss: 0.3110 - Wer: 517.7099 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1157 | 0.6897 | 100 | 0.3224 | 301.8321 | | 0.0737 | 1.3793 | 200 | 0.3057 | 395.5216 | | 0.0153 | 2.0690 | 300 | 0.3026 | 531.1959 | | 0.0154 | 2.7586 | 400 | 0.3081 | 387.7354 | | 0.0051 | 3.4483 | 500 | 0.3110 | 517.7099 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1