--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: BAAI/bge-small-en-v1.5 metrics: - accuracy widget: - text: Can you tell I about eny ongoing promoistion onr discounts onteh organic produce? - text: A bought somenting that didn ' th meet my expectations. It there ein way go get and partial refund? - text: I ' d like to palac a ladge ordet for my business. Do you offer ang specialy bulk shopping rates? - text: Ken you telle mo more about the origin atch farming practices of your cofffee beans? - text: I ' d llike to exchange a product I bought in - store. Du hi needs yo bring tie oringal receipt? pipeline_tag: text-classification inference: true model-index: - name: SetFit with BAAI/bge-small-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9056603773584906 name: Accuracy --- # SetFit with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 5 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Tech Support | | | HR | | | Product | | | Returns | | | Logistics | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9057 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("Can you tell I about eny ongoing promoistion onr discounts onteh organic produce?") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 10 | 16.125 | 28 | | Label | Training Sample Count | |:-------------|:----------------------| | Returns | 8 | | Tech Support | 8 | | Logistics | 8 | | HR | 8 | | Product | 8 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-----:|:----:|:-------------:|:---------------:| | 0.025 | 1 | 0.2185 | - | | 1.25 | 50 | 0.0888 | - | | 2.5 | 100 | 0.0157 | - | | 3.75 | 150 | 0.0053 | - | | 5.0 | 200 | 0.0033 | - | | 6.25 | 250 | 0.004 | - | | 7.5 | 300 | 0.0024 | - | | 8.75 | 350 | 0.0027 | - | | 10.0 | 400 | 0.0025 | - | ### Framework Versions - Python: 3.11.8 - SetFit: 1.0.3 - Sentence Transformers: 2.6.1 - Transformers: 4.39.3 - PyTorch: 2.4.0.dev20240413 - Datasets: 2.18.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```