---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: BAAI/bge-small-en-v1.5
metrics:
- accuracy
widget:
- text: Can you tell I about eny ongoing promoistion onr discounts onteh organic produce?
- text: A bought somenting that didn ' th meet my expectations. It there ein way go
get and partial refund?
- text: I ' d like to palac a ladge ordet for my business. Do you offer ang specialy
bulk shopping rates?
- text: Ken you telle mo more about the origin atch farming practices of your cofffee
beans?
- text: I ' d llike to exchange a product I bought in - store. Du hi needs yo bring
tie oringal receipt?
pipeline_tag: text-classification
inference: true
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9056603773584906
name: Accuracy
---
# SetFit with BAAI/bge-small-en-v1.5
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:-------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tech Support |
- "I ' am trying to place an orden online bt Then website keeps crashing. Can you assit my?"
- "Mi online order won ' t go throw - is there an isuue with years pament prossesing?"
- "I ' m goning an error when tryied tou redeem my loyality points. Who cen assist we?"
|
| HR | - "I ' m considere submitting my ow - weeck notice. Waht It's tehe typical resignation process?"
- "I ' m looking e swich to a part - time sehdule. Whate re rhe requirements?"
- "In ' d loke to fill a formal complain about worksplace discrimination. Who did I contact?"
|
| Product | - 'Whots are your best practices ofr mantain foord quality and freshness?'
- 'Whots newbrand ow nut butters dou you carry tahat are peanut - free?'
- 'Do you hafe any seasonal nor limited - tíme produts in stock rignt now?'
|
| Returns | - 'My grocery delivary contained items tath where spoiled or pas their expiration date. How dos me get replacements?'
- "I ' d llike to exchange a product I bought in - store. Du hi needs yo bring tie oringal receipt?"
- 'I eceibed de demaged item in my online oder. Hou do I’m go about getting a refund?'
|
| Logistics | - 'I have a question about youtr Holiday shiping deathlines and prioritized delivery options'
- 'I nedd to change the delivery addrss foy mh upcoming older. How can I go that?'
- 'Can jou explain York polices around iterms that approxmatlly out of stock or on backorder?'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.9057 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Can you tell I about eny ongoing promoistion onr discounts onteh organic produce?")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 10 | 16.125 | 28 |
| Label | Training Sample Count |
|:-------------|:----------------------|
| Returns | 8 |
| Tech Support | 8 |
| Logistics | 8 |
| HR | 8 |
| Product | 8 |
### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-----:|:----:|:-------------:|:---------------:|
| 0.025 | 1 | 0.2185 | - |
| 1.25 | 50 | 0.0888 | - |
| 2.5 | 100 | 0.0157 | - |
| 3.75 | 150 | 0.0053 | - |
| 5.0 | 200 | 0.0033 | - |
| 6.25 | 250 | 0.004 | - |
| 7.5 | 300 | 0.0024 | - |
| 8.75 | 350 | 0.0027 | - |
| 10.0 | 400 | 0.0025 | - |
### Framework Versions
- Python: 3.11.8
- SetFit: 1.0.3
- Sentence Transformers: 2.6.1
- Transformers: 4.39.3
- PyTorch: 2.4.0.dev20240413
- Datasets: 2.18.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```