Edit model card

wav2vec2_common_voice_accents_us

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2722

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 48
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 384
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
4.549 1.28 400 0.8521
0.4066 2.56 800 0.2407
0.2262 3.83 1200 0.2070
0.1828 5.11 1600 0.2134
0.1565 6.39 2000 0.2060
0.1448 7.67 2400 0.2100
0.1333 8.95 2800 0.2036
0.121 10.22 3200 0.2192
0.1146 11.5 3600 0.2154
0.1108 12.78 4000 0.2223
0.1017 14.06 4400 0.2331
0.094 15.34 4800 0.2257
0.0896 16.61 5200 0.2229
0.0825 17.89 5600 0.2229
0.0777 19.17 6000 0.2417
0.0719 20.45 6400 0.2433
0.0659 21.73 6800 0.2447
0.0651 23.0 7200 0.2446
0.0587 24.28 7600 0.2542
0.056 25.56 8000 0.2587
0.0521 26.84 8400 0.2640
0.0494 28.12 8800 0.2753
0.0465 29.39 9200 0.2722

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.4
  • Tokenizers 0.11.6
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train willcai/wav2vec2_common_voice_accents_us