--- base_model: - WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B - Qwen/Qwen2.5-Coder-7B-Instruct - WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B - Qwen/Qwen2.5-Coder-7B-Instruct - WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B - Qwen/Qwen2.5-Coder-7B-Instruct tags: - merge - mergekit - lazymergekit - WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B - Qwen/Qwen2.5-Coder-7B-Instruct --- # Blue-Rose-Coder-12.3B-Instruct Blue-Rose-Coder-12.3B-Instruct is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B](https://huggingface.co/WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B) * [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) * [WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B](https://huggingface.co/WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B) * [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) * [WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B](https://huggingface.co/WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B) * [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) ## 🧩 Configuration ```yaml dtype: bfloat16 merge_method: passthrough slices: - sources: - layer_range: [0, 8] model: WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B - sources: - layer_range: [4, 12] model: Qwen/Qwen2.5-Coder-7B-Instruct - sources: - layer_range: [8, 16] model: WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B - sources: - layer_range: [12, 20] model: Qwen/Qwen2.5-Coder-7B-Instruct - sources: - layer_range: [16, 24] model: WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B - sources: - layer_range: [20, 28] model: Qwen/Qwen2.5-Coder-7B-Instruct ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "win10/Blue-Rose-Coder-12.3B-Instruct" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```