winegarj commited on
Commit
281f29e
1 Parent(s): 2b8b3ac

End of training

Browse files
Files changed (1) hide show
  1. README.md +13 -12
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
  license: apache-2.0
 
3
  tags:
4
  - generated_from_trainer
5
  datasets:
@@ -21,7 +22,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.9025229357798165
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.2805
35
- - Accuracy: 0.9025
36
 
37
  ## Model description
38
 
@@ -63,16 +64,16 @@ The following hyperparameters were used during training:
63
 
64
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
- | No log | 1.0 | 132 | 0.2592 | 0.8888 |
67
- | No log | 2.0 | 264 | 0.2770 | 0.8979 |
68
- | No log | 3.0 | 396 | 0.2805 | 0.9025 |
69
- | 0.1914 | 4.0 | 528 | 0.2975 | 0.9014 |
70
- | 0.1914 | 5.0 | 660 | 0.3026 | 0.9002 |
71
 
72
 
73
  ### Framework versions
74
 
75
- - Transformers 4.29.1
76
- - Pytorch 2.0.1+cu117
77
- - Datasets 2.12.0
78
- - Tokenizers 0.13.3
 
1
  ---
2
  license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.8990825688073395
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.3077
36
+ - Accuracy: 0.8991
37
 
38
  ## Model description
39
 
 
64
 
65
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | No log | 1.0 | 132 | 0.2548 | 0.8888 |
68
+ | No log | 2.0 | 264 | 0.2657 | 0.8956 |
69
+ | No log | 3.0 | 396 | 0.2755 | 0.8968 |
70
+ | 0.1961 | 4.0 | 528 | 0.2946 | 0.8956 |
71
+ | 0.1961 | 5.0 | 660 | 0.3077 | 0.8991 |
72
 
73
 
74
  ### Framework versions
75
 
76
+ - Transformers 4.35.2
77
+ - Pytorch 2.1.1+cu121
78
+ - Datasets 2.15.0
79
+ - Tokenizers 0.15.0