--- base_model: meta-llama/Llama-2-7b-hf tags: - generated_from_trainer model-index: - name: out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) # out This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.8e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3782 | 0.01 | 1 | 1.4211 | | 1.1948 | 0.2 | 14 | 1.2273 | | 1.0953 | 0.4 | 28 | 1.2137 | | 1.1464 | 0.6 | 42 | 1.2099 | | 1.1481 | 0.81 | 56 | 1.2080 | | 1.0277 | 1.01 | 70 | 1.2022 | | 0.9344 | 1.21 | 84 | 1.2049 | | 1.1294 | 1.41 | 98 | 1.2033 | | 1.0933 | 1.61 | 112 | 1.2002 | | 0.987 | 1.81 | 126 | 1.1996 | | 0.9491 | 2.01 | 140 | 1.1972 | | 0.9673 | 2.22 | 154 | 1.2058 | | 0.99 | 2.42 | 168 | 1.2048 | | 0.9241 | 2.62 | 182 | 1.2049 | | 0.9204 | 2.82 | 196 | 1.2048 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.14.0