File size: 13,789 Bytes
f345971
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79ab26fbcc10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79ab26fbcca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79ab26fbcd30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79ab26fbcdc0>", "_build": "<function ActorCriticPolicy._build at 0x79ab26fbce50>", "forward": "<function ActorCriticPolicy.forward at 0x79ab26fbcee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79ab26fbcf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79ab26fbd000>", "_predict": "<function ActorCriticPolicy._predict at 0x79ab26fbd090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79ab26fbd120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79ab26fbd1b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79ab26fbd240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79ab26f6d340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727273905313549490, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE1wmz2P1iq6GtVFO4Q4gjcEJaw5I5olugAAgD8AAIA/5qZXvRi/lj82xiQ8pMJ+vgqrNr3CoVS8AAAAAAAAAACzjjq94aCbuuiTjDnObZk02dOFuqLTobgAAIA/AACAP+ay8j2Z7DE/bd//u8NOhb7hByQ9Z9ZHvQAAAAAAAAAAZqZRvClYc7pck0G7pua2N6ibsDjdJAU6AACAPwAAgD/NOAU8SM+ruqnFBTm7dIe2QHz6Of3ef7UAAIA/AACAP82Ws732XGe6BqpxOR48CjVyvpg75IaKuAAAgD8AAIA/gz+qPj4iWT8LbwE+3faQvr6KaT4jsUu9AAAAAAAAAADNnxk9KVwPuuENhTdLDScyO3gcu2bynbYAAIA/AACAPw31Oz77EdK8hcZuuTm20TeaVza+EP6jOAAAgD8AAIA/AEgyvOxx7bndf+e6VR3KtYMiJbsamQo6AACAPwAAgD/NFw69H13WuXHTjTvU3F84s2vhOhI9NrkAAIA/AACAP81sejuPXjm6g0mxuiKqljOLsJe7hmLOOQAAgD8AAIA/ZnsPvSnQebpKwmE7hk7Itf8wPLlwKrm0AACAPwAAgD8z0oo9j8I1uhrGvbcJrfiyZtAWOxop3DYAAIA/AACAP+1/Dz7wB4I+kis5vhEOhb5LCSI9kzuRvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGRwmoR7JGSMAWyUTegDjAF0lEdAoeNDKmsNlXV9lChoBkdAX9D9VFQVK2gHTegDaAhHQKHk+bVjI7x1fZQoaAZHQGFsUoa1kUdoB03oA2gIR0Ch5TJlz2eydX2UKGgGR0A8ZWf9P1tgaAdNGQFoCEdAoebtghKUV3V9lChoBkdAaGPpnHvMKWgHTegDaAhHQKHqCM/hVEN1fZQoaAZHQF926wMYuTRoB03oA2gIR0Ch7BNPxhDxdX2UKGgGR0BcYDWoWHk+aAdN6ANoCEdAoe3BpnHvMXV9lChoBkdAYHb9PUKArmgHTegDaAhHQKHuLS2H+Id1fZQoaAZHQEcW6TW5H3FoB00TAWgIR0Ch7lfaHsTndX2UKGgGR0Ben0Qf6oETaAdN6ANoCEdAoe63Olfqo3V9lChoBkdAZigaXKKYRmgHTegDaAhHQKHu3WQwK0F1fZQoaAZHQGEs5k9U0eloB03oA2gIR0Ch7vu1F6RhdX2UKGgGR0BjKpHkLhJiaAdN6ANoCEdAofDq3b212XV9lChoBkdAYVR2IO6NEWgHTegDaAhHQKH1kOZssQN1fZQoaAZHQE44tFrl/6RoB00WAWgIR0CiA5tix3V1dX2UKGgGR8Aqj9iMHbAUaAdL6mgIR0CiBQ6CtihGdX2UKGgGR0Boce4kNWluaAdN6ANoCEdAogW+DrZ8KHV9lChoBkdAcNZ85CF9KGgHTecCaAhHQKIPxj/+85F1fZQoaAZHQGGKLXtjTa1oB03oA2gIR0CiEEPv0AcUdX2UKGgGR0BiX6nR9gF5aAdN6ANoCEdAohNlp22Xs3V9lChoBkdAZWXM0P6KtWgHTegDaAhHQKIVQzTF2mp1fZQoaAZHQGPLpWV/tppoB03oA2gIR0CiFWe0Xxe+dX2UKGgGR0Bks7Qb+98JaAdN6ANoCEdAohas9t/FznV9lChoBkdAY1F3Y+Sr52gHTegDaAhHQKIb1DrJKap1fZQoaAZHQGBpLD63y7RoB03oA2gIR0CiHhpW/8EWdX2UKGgGR0BjBDNbC79RaAdN6ANoCEdAoh60th/iHnV9lChoBkdAYwg6YE4ecWgHTegDaAhHQKIe/r8iwB51fZQoaAZHQGQ5DFId2gZoB03oA2gIR0CiH4DRMN+cdX2UKGgGR0BhNhGrjo6kaAdN6ANoCEdAoh/HOv+wT3V9lChoBkdAY6pKmKqGUWgHTegDaAhHQKInHzbN8md1fZQoaAZHQGZIPDHfdh1oB03oA2gIR0CiKSusLfDUdX2UKGgGR0Bh/g6r/82raAdN6ANoCEdAojXcaAFxGXV9lChoBkdAZnrCw8nuzGgHTegDaAhHQKI2yumrKeV1fZQoaAZHQGH5kZBLPD5oB03oA2gIR0CiQfiwr1/UdX2UKGgGR0BmIg20iQkpaAdN6ANoCEdAokJ1fgJkXnV9lChoBkdAZsOmP5pJw2gHTegDaAhHQKJFplHz6Jt1fZQoaAZHQGAbpw0fozNoB03oA2gIR0CiR6JbD/EPdX2UKGgGR0Bi8SfFrEcbaAdN6ANoCEdAokfIaNuLrHV9lChoBkdAYQiv24/eL2gHTegDaAhHQKJJHECvHLl1fZQoaAZHQGUqpng5zYFoB03oA2gIR0CiTWjh1klNdX2UKGgGR0BiPe7jDKoyaAdN6ANoCEdAok+2SIP9UHV9lChoBkdAYnqcy31BdGgHTegDaAhHQKJQU4gieNF1fZQoaAZHQGcpAYYR/VloB03oA2gIR0CiUJXIlt0ndX2UKGgGR0BlxtKXfIjoaAdN6ANoCEdAolEW3+dbxHV9lChoBkdAZDeTbFjur2gHTegDaAhHQKJRe2uPmxN1fZQoaAZHQGRzswDeTFFoB03oA2gIR0CiWeaO5rgwdX2UKGgGR0BkfJC0F8ohaAdN6ANoCEdAolv5LPD503V9lChoBkdAX30dZJTVD2gHTegDaAhHQKJdPQfp2U11fZQoaAZHQF+TqBEroW5oB03oA2gIR0CiaLqtYB/7dX2UKGgGR0BbTsinpB5YaAdN6ANoCEdAonSE6aLGaXV9lChoBkdAZcbC3PRiPWgHTegDaAhHQKJ1F5rP+n91fZQoaAZHQETCiJO32EloB00pAWgIR0CidcFRgqmTdX2UKGgGR0BfNmYa5wwTaAdN6ANoCEdAong6RjjJdXV9lChoBkdAZlrZHuqm0mgHTegDaAhHQKJ6HwT/Q0J1fZQoaAZHQGfkOYYzi0hoB03oA2gIR0CiekPxx1gZdX2UKGgGR0Bv2aR4hUzbaAdNFwNoCEdAonszYChexHV9lChoBkdAYx8s+V1OkGgHTegDaAhHQKJ7lnyup0h1fZQoaAZHQGfHvDP4VRFoB03oA2gIR0Cif83L/0dzdX2UKGgGR0BfT7JjlPrOaAdN6ANoCEdAooGdUQ04znV9lChoBkdAYTIIwdsBQ2gHTegDaAhHQKKCGT6BRQ91fZQoaAZHQGWekmx+rlxoB03oA2gIR0CigrmrCFbndX2UKGgGR0Bi2LiyY5T7aAdN6ANoCEdAooMWd9Ujs3V9lChoBkdAYSLciW3Sa2gHTegDaAhHQKKN0K6WgOB1fZQoaAZHQGTBfeDWbw1oB03oA2gIR0CikF8CgbqAdX2UKGgGR0BnCsZP2wmmaAdN6ANoCEdAopHgeYD1XnV9lChoBkdALfVhb4agmWgHS/9oCEdAoqjBRdhRZXV9lChoBkdAXz9JkGzKLmgHTegDaAhHQKKr1W1c+q11fZQoaAZHQF2pdCVrylNoB03oA2gIR0CirGoMa0hNdX2UKGgGR0Be8ZxaPjn3aAdN6ANoCEdAoq0lehPCVXV9lChoBkdAYHKY77sOXmgHTegDaAhHQKKvzEG7jDN1fZQoaAZHQGPAk6DGtIVoB03oA2gIR0Cisc3zDn/2dX2UKGgGR0BfTGyHEdeZaAdN6ANoCEdAorH0jJMg2nV9lChoBkdAXbDLEDQqqmgHTegDaAhHQKKy3xYJVsF1fZQoaAZHQGTJP2f02+BoB03oA2gIR0Cis1FdLQHBdX2UKGgGR0BkV5GMGX5WaAdN6ANoCEdAordDvsqrinV9lChoBkdAYc6H/Lkjo2gHTegDaAhHQKK5Jbpu/Dd1fZQoaAZHQGTwuk1uR9xoB03oA2gIR0CiublvAGjcdX2UKGgGR0BmsM5hjOLSaAdN6ANoCEdAorqHbTMJQnV9lChoBkdAZIf9qDbrT2gHTegDaAhHQKK647p3X7N1fZQoaAZHQGMwlXq7iAFoB03oA2gIR0Ciw7UAT7EYdX2UKGgGR0BjhBaxHG0eaAdN6ANoCEdAoscSCQLeAXV9lChoBkdAZP9pt78ejmgHTegDaAhHQKLc02fkFOh1fZQoaAZHQGLHuh0yP+5oB03oA2gIR0Ci33dmxt52dX2UKGgGR0Bk22HHmzSkaAdN6ANoCEdAot/158jRlnV9lChoBkdAcg/MbWEsa2gHTZsDaAhHQKLgG2MsH0N1fZQoaAZHQGaIJWFN+LFoB03oA2gIR0Ci4IaGgzxgdX2UKGgGR0BxItWHUMG5aAdN8AJoCEdAouHW7HyVfXV9lChoBkdAY9HkQwsXi2gHTegDaAhHQKLkL3KSxJN1fZQoaAZHQGTv10cOskpoB03oA2gIR0Ci5EyThYNidX2UKGgGR0BjH2zlcQiBaAdN6ANoCEdAouT8wg1WKnV9lChoBkdAZepHG0eEI2gHTegDaAhHQKLlVGRV6u51fZQoaAZHQEnwhFmWdEtoB00CAWgIR0Ci5/15KODKdX2UKGgGR0BhvEZNwiqyaAdN6ANoCEdAouqAGIKtxXV9lChoBkdAcNClEZzgdmgHTeEDaAhHQKLqszeoDPp1fZQoaAZHQF0BgDifg75oB03oA2gIR0Ci65dYnv2HdX2UKGgGR0BgWqjxkNF0aAdN6ANoCEdAouvfvfCQ93V9lChoBkdAbqIuGsV+JGgHTc4DaAhHQKL0Yz4UN8V1fZQoaAZHQFAmVafSQYFoB0vvaAhHQKL2GGahHsl1fZQoaAZHQF2R6xxDLKVoB03oA2gIR0Ci+JDUNKAbdX2UKGgGR0Bt6/Upd8iOaAdNtgFoCEdAovkGiUPhAHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}