wooii commited on
Commit
2cf2218
1 Parent(s): 4a1ea27

Uploaded PPO-BipedalWalker-v3

Browse files
PPO-BipedalWalker-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1041735f4273d3284e2239d0b42754d9607f49c7dec4c8c85666204ed204b0f3
3
+ size 175610
PPO-BipedalWalker-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
PPO-BipedalWalker-v3/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7dcb48182710>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dcb481827a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dcb48182830>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dcb481828c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7dcb48182950>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7dcb481829e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dcb48182a70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dcb48182b00>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7dcb48182b90>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dcb48182c20>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dcb48182cb0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dcb48182d40>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7dcb48184bc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1694820725008637150,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAABvnvT6uzKk9h9GBPsx2s7y4I/u9t02Gv7Qx8b73mIE+AACAP/dnbj8y5Vm/+MQ8P///fz8AAAAAYYalPs3Kpj6Dj6s+UtW0PrXhxD54xt0+/usBPwvOIj8s/14/AACAP+vq0j6AQeG93L/MPhxiHT1JhE2/AACfN4C0lL0RsCU/AAAAAHOTZz/gHiA++FYhP/v/fz8AAAAA2ceQPp94lD7D1ps+R3GnPjo3uj7WqNU+QS39PgZxIj+HFlk/AACAP7NgfT7bU+q9IZOSPrEy1bw/qFC/AACANARhXj5YuSc/AAAAALgUkz/3/38/YFJJP/P/fz8AAAAA2WWAPg7QgT4aW4Y+7B6OPuJMmj5p+68+fIHTPvi3CD+ojUI/AACAP7Xe5D3gYvE8Qd2JPk12Fb5rfJ6+Bq2YPbgq474Q2+q+AAAAAMw8lD8tyT4/eBYkvgAAgL8AAAAA5Y2xPqAktT5wJb4+9cPNPk495T6PcAE/Bz0dP2DBRj8AAIA/AACAP9OcJz9Y1eI7WquiPk1qTT0avVW/AABAM0Dr2zy798c9AACAP0gUjj89D6K+YjNRP+3kGb4AAAAA9KqsPnIyrj7jC7Q+Mky8Pl+vyD71sds+EHf9PtNRGz/PjVg/AACAP0Ti0TsyHxO+n7q1Pkq4GjyrEVO/kK9WPblMQz8AAIA/AAAAAADJlD/l/38/aFVvPwAAKLYAAIA/r9GMPoY1ij65kos+x7+QPtmomT52hqc+MTvBPvgE8D6r8R0/AACAP1Pw7j7E0og9MF2iPoNesb0Idf++jjuHv1D93r5H654+AACAPx8qiD98wBs/9ownPwAAgL8AAAAA+FOYPvVNnD5+AKQ+P/6wPiScxT4h0OU+S7EHPy6vKD/3020/AACAPzV+lz7vMSM9IXpzPmptxTx4lLi+/v9/v7zSkL5/dhY/AACAP47QhD+bpUA+LoE0PwAAgD8AAAAAfuKjPs5EpT7rmqs+Pfa3PnKmyj5yseY+alUHP1ggKD8vKls/AACAPwvMd72P+QM9vRSNPrujWbzQwVW/ACDlt1LOKj8z39O/AAAAAOZnkT8AAEg2oBu0Pq/+D78AAIA/2AqtPuwBrz7ZUrU+KMzAPs1C0z7r7e8+p6MNP8RFLT+kKmU/AACAPyYbxT7BY6g9JhskPs7UM73HsUm/9BAUPhBma74BAIC/AAAAAKwXiT/Z5wK/4HhevcdvUT8AAAAAShebPjxTmj56KJ8+KtKoPt/ztT7xpMg+lRvlPu5iCj+FOTk/AACAP5EQuT6ppaU63rigPs2AnzzDETW/+mwqv6yCuD6bCSk/AACAP7eFhj9XdBu/8kAePwAAgD8AAAAAsuG0PjIWtD4Pxbc+auW/PglRzT4EPOE+aiL/PvK1HD/s7k4/AACAP541pj7GhAa+GjLUPnjCrLxdEFS/AAAAAEAwLjxw2zQ/AAAAAI5Zij/GtAO/Bi9xP/z/fz8AAAAATP6HPkEzij5BF5A+r2eYPp2HpD4ILbg+bODUPjmDAD9qISY/AACAP2HzaL3Pblw9bSL7PSyeET4aSkm/7GdtPo1xIj///3+/AAAAAJM5kT8AAAAAdXlPP0UpUL8AAIA/X06lPrAnpj4Nfao+JiqyPjM1vj6WGM8+vIXqPgmWET/cNEw/AACAP0e9cT5FbLw8CKChPi+Iy708OE+/r+qkvw7OuD7z/38/AAAAAIB1jT8BoJ29PqhsP6uqKjIAAAAAU26cPh01nj6vXqQ+T3SvPj1awj6MUts+w4sAP8XlID8JclQ/AACAP8L79rxuGzc9JFgvPix0p7zb2mm+ptWRPhgidr4RuHC+AAAAALw2jj8AAAAAVhGMPnXzwr0AAAAA9Ra3Pt+3vD6BRsY+dS3UPltH6D7fVQQ/OIMcP3CnRT8AAIA/AACAP9gUFj4vCIQ9GlcsPvgcyb1H1hK+3s1Nv8BtkL6Ud5W+AACAP6dEkT8AAAAAZoAHP/v/fz8AAAAAeAixPuostD4kR7w+jA7IPpgH3D5sx/s+OAgTP3ynOD8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIZv5YYBNqMAWyUTUAGjAF0lEdAjm98XFcY7HV9lChoBkdAONhStNi6QWgHTY8FaAhHQI5wP4REnb91fZQoaAZHQGPwXS0BwMpoB01ABmgIR0COcjz1bqyGdX2UKGgGR0BgNMPlMh5gaAdNQAZoCEdAjno3kgfU4XV9lChoBkdAYg9WT5ftyGgHTUAGaAhHQI58JCOWBz51fZQoaAZHwEJ4sxO+IuZoB01bA2gIR0COfkaDPGADdX2UKGgGR8A681gYxcmjaAdN6gNoCEdAjoC1BUrCnHV9lChoBkfAXSrndO6/ZmgHS1BoCEdAjoJmHgxagXV9lChoBkdAX7i5AhStNmgHTUAGaAhHQI6FOorFwUB1fZQoaAZHQGGBLpJPIn1oB01ABmgIR0COiP5ZbILgdX2UKGgGR0Bi2oD9wWFfaAdNQAZoCEdAjomQ9RrJsHV9lChoBkdAYDzZaFEiMmgHTUAGaAhHQI6M5vo/zJ91fZQoaAZHwEy11M/QjUxoB00xAmgIR0COmQf5k9U0dX2UKGgGR0Bkcl2icoYvaAdNQAZoCEdAjpvuWKMvRXV9lChoBkdAYhLQMx46fmgHTUAGaAhHQI6iCtA9mpV1fZQoaAZHQGN0WLpA2Q5oB01ABmgIR0COp4eCkGiYdX2UKGgGR8BcioVM23rlaAdLX2gIR0COqXipeeFtdX2UKGgGR0Bh43hVENONaAdNQAZoCEdAjqm1ktmL+HV9lChoBkdAYYvwPRRdhWgHTUAGaAhHQI9evf642CN1fZQoaAZHwE4WNvOyE+RoB02bAWgIR0CPaZqDbrTqdX2UKGgGR0Bi1kLSeAd5aAdNQAZoCEdAj3Je4LCvYHV9lChoBkdAYwTRwZOzp2gHTUAGaAhHQI9zljAi3Xt1fZQoaAZHQGPsdOh0yQBoB01ABmgIR0CPdoaxX4j9dX2UKGgGR8BAurVnVXmvaAdNvQJoCEdAj38dfsu3+nV9lChoBkfAWM67oSteU2gHS39oCEdAj39526kIonV9lChoBkdAZECYtQKrrGgHTUAGaAhHQI+BUzbeuV51fZQoaAZHQGFFCwKSgXdoB01ABmgIR0CPh1oSL61tdX2UKGgGR0BjoC15Sm65aAdNQAZoCEdAj4ka7EpAlnV9lChoBkdAYFkM1jy4F2gHTUAGaAhHQI+L2eMAFPl1fZQoaAZHwFClf2saKk5oB03TAWgIR0CPjXx//echdX2UKGgGR0BhjHnOjZctaAdNQAZoCEdAj4+ge7tiQXV9lChoBkfAXRqf7JnxrmgHS0xoCEdAj4/ycTakAXV9lChoBkfASMXA0sOG02gHTXQCaAhHQI+QMQ04zad1fZQoaAZHQGKvIAOrhitoB01ABmgIR0CPkFEroW56dX2UKGgGR8BaPW9QGfPHaAdLMmgIR0CPktjrAxi5dX2UKGgGR0Bi3VjbzshQaAdNQAZoCEdAj5OkUsWfsnV9lChoBkfAXM4VUMoc72gHS1BoCEdAj5P611GLDXV9lChoBkfAW5W6asp5NWgHS0loCEdAj5bVUlzEJnV9lChoBkdAYpmQlKK51GgHTUAGaAhHQI+fn6be/Hp1fZQoaAZHQGUdgHE/B31oB01ABmgIR0CPokoJAt4BdX2UKGgGR8BWpYb4rSVoaAdLjWgIR0CPqPB55Z8sdX2UKGgGR0BhUmfmLcbjaAdNQAZoCEdAj6roxgy/K3V9lChoBkdAY+xQiRnvlWgHTUAGaAhHQI+28BCD28J1fZQoaAZHwFubE0zj3mFoB0tHaAhHQI+6ev4dp7F1fZQoaAZHwFfs7PIGQjloB0tsaAhHQI+/lLHuJDV1fZQoaAZHQDQGTcIqsltoB00oBWgIR0CPwetyxRl6dX2UKGgGR0BiPq8e0XxfaAdNQAZoCEdAj8d3WFvhqHV9lChoBkfAQG7RWtEG7mgHTekEaAhHQI/IqvRqoIh1fZQoaAZHQGPfRpL26CloB01ABmgIR0CQP1A4GUwBdX2UKGgGR0Bh9CbF0gbIaAdNQAZoCEdAkECM+A3DN3V9lChoBkdAYoD1Oj7AL2gHTUAGaAhHQJBDkzxgAp91fZQoaAZHQGFv8TJyQxNoB01ABmgIR0CQRoYyfthNdX2UKGgGR8BZPSRr8BMjaAdLgWgIR0CQRrAqd6LPdX2UKGgGR0Bj1RGlQ/HHaAdNQAZoCEdAkEee54GD+XV9lChoBkdAZKVgssg+yWgHTUAGaAhHQJBHvr8iwB51fZQoaAZHQGRBr6ciGFloB01ABmgIR0CQSVzbvgFYdX2UKGgGR0Bi70o8ZDRdaAdNQAZoCEdAkEmED2alUXV9lChoBkdAZBVLq2SdOWgHTUAGaAhHQJBLhptaY/p1fZQoaAZHwFwfovi97F9oB0s+aAhHQJBLqHzpX6t1fZQoaAZHQGEhpd8iOedoB01ABmgIR0CQUloaUA1fdX2UKGgGR0BihQMWoFV1aAdNQAZoCEdAkFgIWxhUi3V9lChoBkdAYRdWattALWgHTUAGaAhHQJBY+F36hxp1fZQoaAZHQGOzNCqp97ZoB01ABmgIR0CQYqGc4HX3dX2UKGgGR0BkP0UsWfseaAdNQAZoCEdAkGPrRSgoPXV9lChoBkfAWgjb48EFGGgHSzNoCEdAkGVGois4k3V9lChoBkdAYijOX3QD3mgHTUAGaAhHQJBm3VJ+UhV1fZQoaAZHQFwEAaef7JpoB01ABmgIR0CQZ3COFQEZdX2UKGgGR0Bj3ARPGhmHaAdNQAZoCEdAkGrbKvFFUnV9lChoBkfAWjh/7SApa2gHSy1oCEdAkGw/vv0AcXV9lChoBkdAZRGcmShakmgHTUAGaAhHQJBsQ1Muez51fZQoaAZHP9swztTkyUNoB02iBWgIR0CQbo4keIVNdX2UKGgGR8BXqePJaJQ+aAdLY2gIR0CQbqk9ECvHdX2UKGgGR0Bh+WwNb1RMaAdNQAZoCEdAkHIwHu7YkHV9lChoBkdAZgWpJf6XSmgHTUAGaAhHQJDJFj3Ehq11fZQoaAZHQGIaHeJpFkRoB01ABmgIR0CQyTbkfcN6dX2UKGgGR0BloZ+2E0zkaAdNQAZoCEdAkMro2XLNfXV9lChoBkdAZGIR/ViF02gHTUAGaAhHQJDMWNipeeF1fZQoaAZHQGNVKvNeMQ5oB01ABmgIR0CQzHOVgQYldX2UKGgGR0Bhju/UONHZaAdNQAZoCEdAkNCqgRK6F3V9lChoBkfAWherKeTV2GgHS3toCEdAkNOjDXOGCnV9lChoBkdAY8ZEit7rs2gHTUAGaAhHQJDVZs67ulZ1fZQoaAZHQGYtSxA0KqpoB01ABmgIR0CQ1lkN4JNTdX2UKGgGR8A7xSDAaef7aAdNUANoCEdAkN3izTnaFnV9lChoBkdANZdZ7ojfN2gHTZgEaAhHQJDetsQ/X5F1fZQoaAZHwFqp94/u9e1oB0sqaAhHQJDf2l67dzp1fZQoaAZHwF0fTRplBhRoB0tQaAhHQJDgAwdsBQx1fZQoaAZHQGYcepXIU8FoB01ABmgIR0CQ4EbS7Xg+dX2UKGgGR0BjunoC+10DaAdNQAZoCEdAkOQmDUVi4XV9lChoBkdAYbghMajveGgHTUAGaAhHQJDmmv+wTuh1fZQoaAZHQGQciXyAhB9oB01ABmgIR0CQ54FgUlAvdX2UKGgGR8BccURJ2+wlaAdLVWgIR0CQ6hKujh1ldX2UKGgGR0BjgRwKjSG8aAdNQAZoCEdAkO+LbL2YfHV9lChoBkdAY8wws5GSZGgHTUAGaAhHQJDvpe/pMYd1fZQoaAZHwFgA7JW/8EVoB0tkaAhHQJDyD5ZbILh1fZQoaAZHQFC7QYUFjd5oB036BWgIR0CQ8rK9wm3OdX2UKGgGR0Bl78/dIoVmaAdNQAZoCEdAkPNVmBe5WnV9lChoBkdAZcfTnaFmF2gHTUAGaAhHQJD2SBoVVPx1fZQoaAZHwFeqRNyo4uNoB0uJaAhHQJD2vt/nW8R1fZQoaAZHQGV5+eOGTLZoB01ABmgIR0CQ95sabWmQdX2UKGgGR0Bk9WuX/o7naAdNQAZoCEdAkPe1j7Q9inVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVRgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgUSxiFlGgYdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoECiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLGIWUaBh0lFKUjARoaWdolGgQKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksYhZRoGHSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
61
+ "_shape": [
62
+ 24
63
+ ],
64
+ "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
65
+ "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
66
+ "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
67
+ "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVoQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True True True True]",
75
+ "bounded_above": "[ True True True True]",
76
+ "_shape": [
77
+ 4
78
+ ],
79
+ "low": "[-1. -1. -1. -1.]",
80
+ "high": "[1. 1. 1. 1.]",
81
+ "low_repr": "-1.0",
82
+ "high_repr": "1.0",
83
+ "_np_random": null
84
+ },
85
+ "n_envs": 16,
86
+ "n_steps": 2048,
87
+ "gamma": 0.99,
88
+ "gae_lambda": 0.95,
89
+ "ent_coef": 0.0,
90
+ "vf_coef": 0.5,
91
+ "max_grad_norm": 0.5,
92
+ "batch_size": 64,
93
+ "n_epochs": 10,
94
+ "clip_range": {
95
+ ":type:": "<class 'function'>",
96
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
97
+ },
98
+ "clip_range_vf": null,
99
+ "normalize_advantage": true,
100
+ "target_kl": null,
101
+ "lr_schedule": {
102
+ ":type:": "<class 'function'>",
103
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
104
+ }
105
+ }
PPO-BipedalWalker-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:982f98f640d6036d5b589b58dcd6d0a85904209926b9a0ad923f1c524055e8a9
3
+ size 105008
PPO-BipedalWalker-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d37c80aa6b40f56f827c70d87e11911b68120d88fca4f17e8c39b31a9a54c649
3
+ size 51838
PPO-BipedalWalker-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-BipedalWalker-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BipedalWalker-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: BipedalWalker-v3
16
+ type: BipedalWalker-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 169.50 +/- 155.55
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **BipedalWalker-v3**
25
+ This is a trained model of a **PPO** agent playing **BipedalWalker-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dcb48182710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dcb481827a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dcb48182830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dcb481828c0>", "_build": "<function ActorCriticPolicy._build at 0x7dcb48182950>", "forward": "<function ActorCriticPolicy.forward at 0x7dcb481829e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dcb48182a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dcb48182b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7dcb48182b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dcb48182c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dcb48182cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dcb48182d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dcb48184bc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694820725008637150, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAABvnvT6uzKk9h9GBPsx2s7y4I/u9t02Gv7Qx8b73mIE+AACAP/dnbj8y5Vm/+MQ8P///fz8AAAAAYYalPs3Kpj6Dj6s+UtW0PrXhxD54xt0+/usBPwvOIj8s/14/AACAP+vq0j6AQeG93L/MPhxiHT1JhE2/AACfN4C0lL0RsCU/AAAAAHOTZz/gHiA++FYhP/v/fz8AAAAA2ceQPp94lD7D1ps+R3GnPjo3uj7WqNU+QS39PgZxIj+HFlk/AACAP7NgfT7bU+q9IZOSPrEy1bw/qFC/AACANARhXj5YuSc/AAAAALgUkz/3/38/YFJJP/P/fz8AAAAA2WWAPg7QgT4aW4Y+7B6OPuJMmj5p+68+fIHTPvi3CD+ojUI/AACAP7Xe5D3gYvE8Qd2JPk12Fb5rfJ6+Bq2YPbgq474Q2+q+AAAAAMw8lD8tyT4/eBYkvgAAgL8AAAAA5Y2xPqAktT5wJb4+9cPNPk495T6PcAE/Bz0dP2DBRj8AAIA/AACAP9OcJz9Y1eI7WquiPk1qTT0avVW/AABAM0Dr2zy798c9AACAP0gUjj89D6K+YjNRP+3kGb4AAAAA9KqsPnIyrj7jC7Q+Mky8Pl+vyD71sds+EHf9PtNRGz/PjVg/AACAP0Ti0TsyHxO+n7q1Pkq4GjyrEVO/kK9WPblMQz8AAIA/AAAAAADJlD/l/38/aFVvPwAAKLYAAIA/r9GMPoY1ij65kos+x7+QPtmomT52hqc+MTvBPvgE8D6r8R0/AACAP1Pw7j7E0og9MF2iPoNesb0Idf++jjuHv1D93r5H654+AACAPx8qiD98wBs/9ownPwAAgL8AAAAA+FOYPvVNnD5+AKQ+P/6wPiScxT4h0OU+S7EHPy6vKD/3020/AACAPzV+lz7vMSM9IXpzPmptxTx4lLi+/v9/v7zSkL5/dhY/AACAP47QhD+bpUA+LoE0PwAAgD8AAAAAfuKjPs5EpT7rmqs+Pfa3PnKmyj5yseY+alUHP1ggKD8vKls/AACAPwvMd72P+QM9vRSNPrujWbzQwVW/ACDlt1LOKj8z39O/AAAAAOZnkT8AAEg2oBu0Pq/+D78AAIA/2AqtPuwBrz7ZUrU+KMzAPs1C0z7r7e8+p6MNP8RFLT+kKmU/AACAPyYbxT7BY6g9JhskPs7UM73HsUm/9BAUPhBma74BAIC/AAAAAKwXiT/Z5wK/4HhevcdvUT8AAAAAShebPjxTmj56KJ8+KtKoPt/ztT7xpMg+lRvlPu5iCj+FOTk/AACAP5EQuT6ppaU63rigPs2AnzzDETW/+mwqv6yCuD6bCSk/AACAP7eFhj9XdBu/8kAePwAAgD8AAAAAsuG0PjIWtD4Pxbc+auW/PglRzT4EPOE+aiL/PvK1HD/s7k4/AACAP541pj7GhAa+GjLUPnjCrLxdEFS/AAAAAEAwLjxw2zQ/AAAAAI5Zij/GtAO/Bi9xP/z/fz8AAAAATP6HPkEzij5BF5A+r2eYPp2HpD4ILbg+bODUPjmDAD9qISY/AACAP2HzaL3Pblw9bSL7PSyeET4aSkm/7GdtPo1xIj///3+/AAAAAJM5kT8AAAAAdXlPP0UpUL8AAIA/X06lPrAnpj4Nfao+JiqyPjM1vj6WGM8+vIXqPgmWET/cNEw/AACAP0e9cT5FbLw8CKChPi+Iy708OE+/r+qkvw7OuD7z/38/AAAAAIB1jT8BoJ29PqhsP6uqKjIAAAAAU26cPh01nj6vXqQ+T3SvPj1awj6MUts+w4sAP8XlID8JclQ/AACAP8L79rxuGzc9JFgvPix0p7zb2mm+ptWRPhgidr4RuHC+AAAAALw2jj8AAAAAVhGMPnXzwr0AAAAA9Ra3Pt+3vD6BRsY+dS3UPltH6D7fVQQ/OIMcP3CnRT8AAIA/AACAP9gUFj4vCIQ9GlcsPvgcyb1H1hK+3s1Nv8BtkL6Ud5W+AACAP6dEkT8AAAAAZoAHP/v/fz8AAAAAeAixPuostD4kR7w+jA7IPpgH3D5sx/s+OAgTP3ynOD8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIZv5YYBNqMAWyUTUAGjAF0lEdAjm98XFcY7HV9lChoBkdAONhStNi6QWgHTY8FaAhHQI5wP4REnb91fZQoaAZHQGPwXS0BwMpoB01ABmgIR0COcjz1bqyGdX2UKGgGR0BgNMPlMh5gaAdNQAZoCEdAjno3kgfU4XV9lChoBkdAYg9WT5ftyGgHTUAGaAhHQI58JCOWBz51fZQoaAZHwEJ4sxO+IuZoB01bA2gIR0COfkaDPGADdX2UKGgGR8A681gYxcmjaAdN6gNoCEdAjoC1BUrCnHV9lChoBkfAXSrndO6/ZmgHS1BoCEdAjoJmHgxagXV9lChoBkdAX7i5AhStNmgHTUAGaAhHQI6FOorFwUB1fZQoaAZHQGGBLpJPIn1oB01ABmgIR0COiP5ZbILgdX2UKGgGR0Bi2oD9wWFfaAdNQAZoCEdAjomQ9RrJsHV9lChoBkdAYDzZaFEiMmgHTUAGaAhHQI6M5vo/zJ91fZQoaAZHwEy11M/QjUxoB00xAmgIR0COmQf5k9U0dX2UKGgGR0Bkcl2icoYvaAdNQAZoCEdAjpvuWKMvRXV9lChoBkdAYhLQMx46fmgHTUAGaAhHQI6iCtA9mpV1fZQoaAZHQGN0WLpA2Q5oB01ABmgIR0COp4eCkGiYdX2UKGgGR8BcioVM23rlaAdLX2gIR0COqXipeeFtdX2UKGgGR0Bh43hVENONaAdNQAZoCEdAjqm1ktmL+HV9lChoBkdAYYvwPRRdhWgHTUAGaAhHQI9evf642CN1fZQoaAZHwE4WNvOyE+RoB02bAWgIR0CPaZqDbrTqdX2UKGgGR0Bi1kLSeAd5aAdNQAZoCEdAj3Je4LCvYHV9lChoBkdAYwTRwZOzp2gHTUAGaAhHQI9zljAi3Xt1fZQoaAZHQGPsdOh0yQBoB01ABmgIR0CPdoaxX4j9dX2UKGgGR8BAurVnVXmvaAdNvQJoCEdAj38dfsu3+nV9lChoBkfAWM67oSteU2gHS39oCEdAj39526kIonV9lChoBkdAZECYtQKrrGgHTUAGaAhHQI+BUzbeuV51fZQoaAZHQGFFCwKSgXdoB01ABmgIR0CPh1oSL61tdX2UKGgGR0BjoC15Sm65aAdNQAZoCEdAj4ka7EpAlnV9lChoBkdAYFkM1jy4F2gHTUAGaAhHQI+L2eMAFPl1fZQoaAZHwFClf2saKk5oB03TAWgIR0CPjXx//echdX2UKGgGR0BhjHnOjZctaAdNQAZoCEdAj4+ge7tiQXV9lChoBkfAXRqf7JnxrmgHS0xoCEdAj4/ycTakAXV9lChoBkfASMXA0sOG02gHTXQCaAhHQI+QMQ04zad1fZQoaAZHQGKvIAOrhitoB01ABmgIR0CPkFEroW56dX2UKGgGR8BaPW9QGfPHaAdLMmgIR0CPktjrAxi5dX2UKGgGR0Bi3VjbzshQaAdNQAZoCEdAj5OkUsWfsnV9lChoBkfAXM4VUMoc72gHS1BoCEdAj5P611GLDXV9lChoBkfAW5W6asp5NWgHS0loCEdAj5bVUlzEJnV9lChoBkdAYpmQlKK51GgHTUAGaAhHQI+fn6be/Hp1fZQoaAZHQGUdgHE/B31oB01ABmgIR0CPokoJAt4BdX2UKGgGR8BWpYb4rSVoaAdLjWgIR0CPqPB55Z8sdX2UKGgGR0BhUmfmLcbjaAdNQAZoCEdAj6roxgy/K3V9lChoBkdAY+xQiRnvlWgHTUAGaAhHQI+28BCD28J1fZQoaAZHwFubE0zj3mFoB0tHaAhHQI+6ev4dp7F1fZQoaAZHwFfs7PIGQjloB0tsaAhHQI+/lLHuJDV1fZQoaAZHQDQGTcIqsltoB00oBWgIR0CPwetyxRl6dX2UKGgGR0BiPq8e0XxfaAdNQAZoCEdAj8d3WFvhqHV9lChoBkfAQG7RWtEG7mgHTekEaAhHQI/IqvRqoIh1fZQoaAZHQGPfRpL26CloB01ABmgIR0CQP1A4GUwBdX2UKGgGR0Bh9CbF0gbIaAdNQAZoCEdAkECM+A3DN3V9lChoBkdAYoD1Oj7AL2gHTUAGaAhHQJBDkzxgAp91fZQoaAZHQGFv8TJyQxNoB01ABmgIR0CQRoYyfthNdX2UKGgGR8BZPSRr8BMjaAdLgWgIR0CQRrAqd6LPdX2UKGgGR0Bj1RGlQ/HHaAdNQAZoCEdAkEee54GD+XV9lChoBkdAZKVgssg+yWgHTUAGaAhHQJBHvr8iwB51fZQoaAZHQGRBr6ciGFloB01ABmgIR0CQSVzbvgFYdX2UKGgGR0Bi70o8ZDRdaAdNQAZoCEdAkEmED2alUXV9lChoBkdAZBVLq2SdOWgHTUAGaAhHQJBLhptaY/p1fZQoaAZHwFwfovi97F9oB0s+aAhHQJBLqHzpX6t1fZQoaAZHQGEhpd8iOedoB01ABmgIR0CQUloaUA1fdX2UKGgGR0BihQMWoFV1aAdNQAZoCEdAkFgIWxhUi3V9lChoBkdAYRdWattALWgHTUAGaAhHQJBY+F36hxp1fZQoaAZHQGOzNCqp97ZoB01ABmgIR0CQYqGc4HX3dX2UKGgGR0BkP0UsWfseaAdNQAZoCEdAkGPrRSgoPXV9lChoBkfAWgjb48EFGGgHSzNoCEdAkGVGois4k3V9lChoBkdAYijOX3QD3mgHTUAGaAhHQJBm3VJ+UhV1fZQoaAZHQFwEAaef7JpoB01ABmgIR0CQZ3COFQEZdX2UKGgGR0Bj3ARPGhmHaAdNQAZoCEdAkGrbKvFFUnV9lChoBkfAWjh/7SApa2gHSy1oCEdAkGw/vv0AcXV9lChoBkdAZRGcmShakmgHTUAGaAhHQJBsQ1Muez51fZQoaAZHP9swztTkyUNoB02iBWgIR0CQbo4keIVNdX2UKGgGR8BXqePJaJQ+aAdLY2gIR0CQbqk9ECvHdX2UKGgGR0Bh+WwNb1RMaAdNQAZoCEdAkHIwHu7YkHV9lChoBkdAZgWpJf6XSmgHTUAGaAhHQJDJFj3Ehq11fZQoaAZHQGIaHeJpFkRoB01ABmgIR0CQyTbkfcN6dX2UKGgGR0BloZ+2E0zkaAdNQAZoCEdAkMro2XLNfXV9lChoBkdAZGIR/ViF02gHTUAGaAhHQJDMWNipeeF1fZQoaAZHQGNVKvNeMQ5oB01ABmgIR0CQzHOVgQYldX2UKGgGR0Bhju/UONHZaAdNQAZoCEdAkNCqgRK6F3V9lChoBkfAWherKeTV2GgHS3toCEdAkNOjDXOGCnV9lChoBkdAY8ZEit7rs2gHTUAGaAhHQJDVZs67ulZ1fZQoaAZHQGYtSxA0KqpoB01ABmgIR0CQ1lkN4JNTdX2UKGgGR8A7xSDAaef7aAdNUANoCEdAkN3izTnaFnV9lChoBkdANZdZ7ojfN2gHTZgEaAhHQJDetsQ/X5F1fZQoaAZHwFqp94/u9e1oB0sqaAhHQJDf2l67dzp1fZQoaAZHwF0fTRplBhRoB0tQaAhHQJDgAwdsBQx1fZQoaAZHQGYcepXIU8FoB01ABmgIR0CQ4EbS7Xg+dX2UKGgGR0BjunoC+10DaAdNQAZoCEdAkOQmDUVi4XV9lChoBkdAYbghMajveGgHTUAGaAhHQJDmmv+wTuh1fZQoaAZHQGQciXyAhB9oB01ABmgIR0CQ54FgUlAvdX2UKGgGR8BccURJ2+wlaAdLVWgIR0CQ6hKujh1ldX2UKGgGR0BjgRwKjSG8aAdNQAZoCEdAkO+LbL2YfHV9lChoBkdAY8wws5GSZGgHTUAGaAhHQJDvpe/pMYd1fZQoaAZHwFgA7JW/8EVoB0tkaAhHQJDyD5ZbILh1fZQoaAZHQFC7QYUFjd5oB036BWgIR0CQ8rK9wm3OdX2UKGgGR0Bl78/dIoVmaAdNQAZoCEdAkPNVmBe5WnV9lChoBkdAZcfTnaFmF2gHTUAGaAhHQJD2SBoVVPx1fZQoaAZHwFeqRNyo4uNoB0uJaAhHQJD2vt/nW8R1fZQoaAZHQGV5+eOGTLZoB01ABmgIR0CQ95sabWmQdX2UKGgGR0Bk9WuX/o7naAdNQAZoCEdAkPe1j7Q9inVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVRgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgUSxiFlGgYdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoECiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLGIWUaBh0lFKUjARoaWdolGgQKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksYhZRoGHSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "_shape": [24], "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVoQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (329 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 169.49534529630108, "std_reward": 155.5542038384289, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-15T23:52:56.921247"}