Uploaded PPO-BipedalWalker-v3
Browse files- PPO-BipedalWalker-v3.zip +3 -0
- PPO-BipedalWalker-v3/_stable_baselines3_version +1 -0
- PPO-BipedalWalker-v3/data +105 -0
- PPO-BipedalWalker-v3/policy.optimizer.pth +3 -0
- PPO-BipedalWalker-v3/policy.pth +3 -0
- PPO-BipedalWalker-v3/pytorch_variables.pth +3 -0
- PPO-BipedalWalker-v3/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO-BipedalWalker-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1041735f4273d3284e2239d0b42754d9607f49c7dec4c8c85666204ed204b0f3
|
3 |
+
size 175610
|
PPO-BipedalWalker-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
PPO-BipedalWalker-v3/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7dcb48182710>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dcb481827a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dcb48182830>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dcb481828c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7dcb48182950>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7dcb481829e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7dcb48182a70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dcb48182b00>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7dcb48182b90>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dcb48182c20>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dcb48182cb0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7dcb48182d40>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7dcb48184bc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1694820725008637150,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAABvnvT6uzKk9h9GBPsx2s7y4I/u9t02Gv7Qx8b73mIE+AACAP/dnbj8y5Vm/+MQ8P///fz8AAAAAYYalPs3Kpj6Dj6s+UtW0PrXhxD54xt0+/usBPwvOIj8s/14/AACAP+vq0j6AQeG93L/MPhxiHT1JhE2/AACfN4C0lL0RsCU/AAAAAHOTZz/gHiA++FYhP/v/fz8AAAAA2ceQPp94lD7D1ps+R3GnPjo3uj7WqNU+QS39PgZxIj+HFlk/AACAP7NgfT7bU+q9IZOSPrEy1bw/qFC/AACANARhXj5YuSc/AAAAALgUkz/3/38/YFJJP/P/fz8AAAAA2WWAPg7QgT4aW4Y+7B6OPuJMmj5p+68+fIHTPvi3CD+ojUI/AACAP7Xe5D3gYvE8Qd2JPk12Fb5rfJ6+Bq2YPbgq474Q2+q+AAAAAMw8lD8tyT4/eBYkvgAAgL8AAAAA5Y2xPqAktT5wJb4+9cPNPk495T6PcAE/Bz0dP2DBRj8AAIA/AACAP9OcJz9Y1eI7WquiPk1qTT0avVW/AABAM0Dr2zy798c9AACAP0gUjj89D6K+YjNRP+3kGb4AAAAA9KqsPnIyrj7jC7Q+Mky8Pl+vyD71sds+EHf9PtNRGz/PjVg/AACAP0Ti0TsyHxO+n7q1Pkq4GjyrEVO/kK9WPblMQz8AAIA/AAAAAADJlD/l/38/aFVvPwAAKLYAAIA/r9GMPoY1ij65kos+x7+QPtmomT52hqc+MTvBPvgE8D6r8R0/AACAP1Pw7j7E0og9MF2iPoNesb0Idf++jjuHv1D93r5H654+AACAPx8qiD98wBs/9ownPwAAgL8AAAAA+FOYPvVNnD5+AKQ+P/6wPiScxT4h0OU+S7EHPy6vKD/3020/AACAPzV+lz7vMSM9IXpzPmptxTx4lLi+/v9/v7zSkL5/dhY/AACAP47QhD+bpUA+LoE0PwAAgD8AAAAAfuKjPs5EpT7rmqs+Pfa3PnKmyj5yseY+alUHP1ggKD8vKls/AACAPwvMd72P+QM9vRSNPrujWbzQwVW/ACDlt1LOKj8z39O/AAAAAOZnkT8AAEg2oBu0Pq/+D78AAIA/2AqtPuwBrz7ZUrU+KMzAPs1C0z7r7e8+p6MNP8RFLT+kKmU/AACAPyYbxT7BY6g9JhskPs7UM73HsUm/9BAUPhBma74BAIC/AAAAAKwXiT/Z5wK/4HhevcdvUT8AAAAAShebPjxTmj56KJ8+KtKoPt/ztT7xpMg+lRvlPu5iCj+FOTk/AACAP5EQuT6ppaU63rigPs2AnzzDETW/+mwqv6yCuD6bCSk/AACAP7eFhj9XdBu/8kAePwAAgD8AAAAAsuG0PjIWtD4Pxbc+auW/PglRzT4EPOE+aiL/PvK1HD/s7k4/AACAP541pj7GhAa+GjLUPnjCrLxdEFS/AAAAAEAwLjxw2zQ/AAAAAI5Zij/GtAO/Bi9xP/z/fz8AAAAATP6HPkEzij5BF5A+r2eYPp2HpD4ILbg+bODUPjmDAD9qISY/AACAP2HzaL3Pblw9bSL7PSyeET4aSkm/7GdtPo1xIj///3+/AAAAAJM5kT8AAAAAdXlPP0UpUL8AAIA/X06lPrAnpj4Nfao+JiqyPjM1vj6WGM8+vIXqPgmWET/cNEw/AACAP0e9cT5FbLw8CKChPi+Iy708OE+/r+qkvw7OuD7z/38/AAAAAIB1jT8BoJ29PqhsP6uqKjIAAAAAU26cPh01nj6vXqQ+T3SvPj1awj6MUts+w4sAP8XlID8JclQ/AACAP8L79rxuGzc9JFgvPix0p7zb2mm+ptWRPhgidr4RuHC+AAAAALw2jj8AAAAAVhGMPnXzwr0AAAAA9Ra3Pt+3vD6BRsY+dS3UPltH6D7fVQQ/OIMcP3CnRT8AAIA/AACAP9gUFj4vCIQ9GlcsPvgcyb1H1hK+3s1Nv8BtkL6Ud5W+AACAP6dEkT8AAAAAZoAHP/v/fz8AAAAAeAixPuostD4kR7w+jA7IPpgH3D5sx/s+OAgTP3ynOD8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIZv5YYBNqMAWyUTUAGjAF0lEdAjm98XFcY7HV9lChoBkdAONhStNi6QWgHTY8FaAhHQI5wP4REnb91fZQoaAZHQGPwXS0BwMpoB01ABmgIR0COcjz1bqyGdX2UKGgGR0BgNMPlMh5gaAdNQAZoCEdAjno3kgfU4XV9lChoBkdAYg9WT5ftyGgHTUAGaAhHQI58JCOWBz51fZQoaAZHwEJ4sxO+IuZoB01bA2gIR0COfkaDPGADdX2UKGgGR8A681gYxcmjaAdN6gNoCEdAjoC1BUrCnHV9lChoBkfAXSrndO6/ZmgHS1BoCEdAjoJmHgxagXV9lChoBkdAX7i5AhStNmgHTUAGaAhHQI6FOorFwUB1fZQoaAZHQGGBLpJPIn1oB01ABmgIR0COiP5ZbILgdX2UKGgGR0Bi2oD9wWFfaAdNQAZoCEdAjomQ9RrJsHV9lChoBkdAYDzZaFEiMmgHTUAGaAhHQI6M5vo/zJ91fZQoaAZHwEy11M/QjUxoB00xAmgIR0COmQf5k9U0dX2UKGgGR0Bkcl2icoYvaAdNQAZoCEdAjpvuWKMvRXV9lChoBkdAYhLQMx46fmgHTUAGaAhHQI6iCtA9mpV1fZQoaAZHQGN0WLpA2Q5oB01ABmgIR0COp4eCkGiYdX2UKGgGR8BcioVM23rlaAdLX2gIR0COqXipeeFtdX2UKGgGR0Bh43hVENONaAdNQAZoCEdAjqm1ktmL+HV9lChoBkdAYYvwPRRdhWgHTUAGaAhHQI9evf642CN1fZQoaAZHwE4WNvOyE+RoB02bAWgIR0CPaZqDbrTqdX2UKGgGR0Bi1kLSeAd5aAdNQAZoCEdAj3Je4LCvYHV9lChoBkdAYwTRwZOzp2gHTUAGaAhHQI9zljAi3Xt1fZQoaAZHQGPsdOh0yQBoB01ABmgIR0CPdoaxX4j9dX2UKGgGR8BAurVnVXmvaAdNvQJoCEdAj38dfsu3+nV9lChoBkfAWM67oSteU2gHS39oCEdAj39526kIonV9lChoBkdAZECYtQKrrGgHTUAGaAhHQI+BUzbeuV51fZQoaAZHQGFFCwKSgXdoB01ABmgIR0CPh1oSL61tdX2UKGgGR0BjoC15Sm65aAdNQAZoCEdAj4ka7EpAlnV9lChoBkdAYFkM1jy4F2gHTUAGaAhHQI+L2eMAFPl1fZQoaAZHwFClf2saKk5oB03TAWgIR0CPjXx//echdX2UKGgGR0BhjHnOjZctaAdNQAZoCEdAj4+ge7tiQXV9lChoBkfAXRqf7JnxrmgHS0xoCEdAj4/ycTakAXV9lChoBkfASMXA0sOG02gHTXQCaAhHQI+QMQ04zad1fZQoaAZHQGKvIAOrhitoB01ABmgIR0CPkFEroW56dX2UKGgGR8BaPW9QGfPHaAdLMmgIR0CPktjrAxi5dX2UKGgGR0Bi3VjbzshQaAdNQAZoCEdAj5OkUsWfsnV9lChoBkfAXM4VUMoc72gHS1BoCEdAj5P611GLDXV9lChoBkfAW5W6asp5NWgHS0loCEdAj5bVUlzEJnV9lChoBkdAYpmQlKK51GgHTUAGaAhHQI+fn6be/Hp1fZQoaAZHQGUdgHE/B31oB01ABmgIR0CPokoJAt4BdX2UKGgGR8BWpYb4rSVoaAdLjWgIR0CPqPB55Z8sdX2UKGgGR0BhUmfmLcbjaAdNQAZoCEdAj6roxgy/K3V9lChoBkdAY+xQiRnvlWgHTUAGaAhHQI+28BCD28J1fZQoaAZHwFubE0zj3mFoB0tHaAhHQI+6ev4dp7F1fZQoaAZHwFfs7PIGQjloB0tsaAhHQI+/lLHuJDV1fZQoaAZHQDQGTcIqsltoB00oBWgIR0CPwetyxRl6dX2UKGgGR0BiPq8e0XxfaAdNQAZoCEdAj8d3WFvhqHV9lChoBkfAQG7RWtEG7mgHTekEaAhHQI/IqvRqoIh1fZQoaAZHQGPfRpL26CloB01ABmgIR0CQP1A4GUwBdX2UKGgGR0Bh9CbF0gbIaAdNQAZoCEdAkECM+A3DN3V9lChoBkdAYoD1Oj7AL2gHTUAGaAhHQJBDkzxgAp91fZQoaAZHQGFv8TJyQxNoB01ABmgIR0CQRoYyfthNdX2UKGgGR8BZPSRr8BMjaAdLgWgIR0CQRrAqd6LPdX2UKGgGR0Bj1RGlQ/HHaAdNQAZoCEdAkEee54GD+XV9lChoBkdAZKVgssg+yWgHTUAGaAhHQJBHvr8iwB51fZQoaAZHQGRBr6ciGFloB01ABmgIR0CQSVzbvgFYdX2UKGgGR0Bi70o8ZDRdaAdNQAZoCEdAkEmED2alUXV9lChoBkdAZBVLq2SdOWgHTUAGaAhHQJBLhptaY/p1fZQoaAZHwFwfovi97F9oB0s+aAhHQJBLqHzpX6t1fZQoaAZHQGEhpd8iOedoB01ABmgIR0CQUloaUA1fdX2UKGgGR0BihQMWoFV1aAdNQAZoCEdAkFgIWxhUi3V9lChoBkdAYRdWattALWgHTUAGaAhHQJBY+F36hxp1fZQoaAZHQGOzNCqp97ZoB01ABmgIR0CQYqGc4HX3dX2UKGgGR0BkP0UsWfseaAdNQAZoCEdAkGPrRSgoPXV9lChoBkfAWgjb48EFGGgHSzNoCEdAkGVGois4k3V9lChoBkdAYijOX3QD3mgHTUAGaAhHQJBm3VJ+UhV1fZQoaAZHQFwEAaef7JpoB01ABmgIR0CQZ3COFQEZdX2UKGgGR0Bj3ARPGhmHaAdNQAZoCEdAkGrbKvFFUnV9lChoBkfAWjh/7SApa2gHSy1oCEdAkGw/vv0AcXV9lChoBkdAZRGcmShakmgHTUAGaAhHQJBsQ1Muez51fZQoaAZHP9swztTkyUNoB02iBWgIR0CQbo4keIVNdX2UKGgGR8BXqePJaJQ+aAdLY2gIR0CQbqk9ECvHdX2UKGgGR0Bh+WwNb1RMaAdNQAZoCEdAkHIwHu7YkHV9lChoBkdAZgWpJf6XSmgHTUAGaAhHQJDJFj3Ehq11fZQoaAZHQGIaHeJpFkRoB01ABmgIR0CQyTbkfcN6dX2UKGgGR0BloZ+2E0zkaAdNQAZoCEdAkMro2XLNfXV9lChoBkdAZGIR/ViF02gHTUAGaAhHQJDMWNipeeF1fZQoaAZHQGNVKvNeMQ5oB01ABmgIR0CQzHOVgQYldX2UKGgGR0Bhju/UONHZaAdNQAZoCEdAkNCqgRK6F3V9lChoBkfAWherKeTV2GgHS3toCEdAkNOjDXOGCnV9lChoBkdAY8ZEit7rs2gHTUAGaAhHQJDVZs67ulZ1fZQoaAZHQGYtSxA0KqpoB01ABmgIR0CQ1lkN4JNTdX2UKGgGR8A7xSDAaef7aAdNUANoCEdAkN3izTnaFnV9lChoBkdANZdZ7ojfN2gHTZgEaAhHQJDetsQ/X5F1fZQoaAZHwFqp94/u9e1oB0sqaAhHQJDf2l67dzp1fZQoaAZHwF0fTRplBhRoB0tQaAhHQJDgAwdsBQx1fZQoaAZHQGYcepXIU8FoB01ABmgIR0CQ4EbS7Xg+dX2UKGgGR0BjunoC+10DaAdNQAZoCEdAkOQmDUVi4XV9lChoBkdAYbghMajveGgHTUAGaAhHQJDmmv+wTuh1fZQoaAZHQGQciXyAhB9oB01ABmgIR0CQ54FgUlAvdX2UKGgGR8BccURJ2+wlaAdLVWgIR0CQ6hKujh1ldX2UKGgGR0BjgRwKjSG8aAdNQAZoCEdAkO+LbL2YfHV9lChoBkdAY8wws5GSZGgHTUAGaAhHQJDvpe/pMYd1fZQoaAZHwFgA7JW/8EVoB0tkaAhHQJDyD5ZbILh1fZQoaAZHQFC7QYUFjd5oB036BWgIR0CQ8rK9wm3OdX2UKGgGR0Bl78/dIoVmaAdNQAZoCEdAkPNVmBe5WnV9lChoBkdAZcfTnaFmF2gHTUAGaAhHQJD2SBoVVPx1fZQoaAZHwFeqRNyo4uNoB0uJaAhHQJD2vt/nW8R1fZQoaAZHQGV5+eOGTLZoB01ABmgIR0CQ95sabWmQdX2UKGgGR0Bk9WuX/o7naAdNQAZoCEdAkPe1j7Q9inVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVRgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgUSxiFlGgYdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoECiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLGIWUaBh0lFKUjARoaWdolGgQKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksYhZRoGHSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
24
|
63 |
+
],
|
64 |
+
"low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
|
65 |
+
"high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
|
66 |
+
"low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
|
67 |
+
"high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVoQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True]",
|
75 |
+
"bounded_above": "[ True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
4
|
78 |
+
],
|
79 |
+
"low": "[-1. -1. -1. -1.]",
|
80 |
+
"high": "[1. 1. 1. 1.]",
|
81 |
+
"low_repr": "-1.0",
|
82 |
+
"high_repr": "1.0",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"n_envs": 16,
|
86 |
+
"n_steps": 2048,
|
87 |
+
"gamma": 0.99,
|
88 |
+
"gae_lambda": 0.95,
|
89 |
+
"ent_coef": 0.0,
|
90 |
+
"vf_coef": 0.5,
|
91 |
+
"max_grad_norm": 0.5,
|
92 |
+
"batch_size": 64,
|
93 |
+
"n_epochs": 10,
|
94 |
+
"clip_range": {
|
95 |
+
":type:": "<class 'function'>",
|
96 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
97 |
+
},
|
98 |
+
"clip_range_vf": null,
|
99 |
+
"normalize_advantage": true,
|
100 |
+
"target_kl": null,
|
101 |
+
"lr_schedule": {
|
102 |
+
":type:": "<class 'function'>",
|
103 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
104 |
+
}
|
105 |
+
}
|
PPO-BipedalWalker-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:982f98f640d6036d5b589b58dcd6d0a85904209926b9a0ad923f1c524055e8a9
|
3 |
+
size 105008
|
PPO-BipedalWalker-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d37c80aa6b40f56f827c70d87e11911b68120d88fca4f17e8c39b31a9a54c649
|
3 |
+
size 51838
|
PPO-BipedalWalker-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-BipedalWalker-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalker-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: BipedalWalker-v3
|
16 |
+
type: BipedalWalker-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 169.50 +/- 155.55
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **BipedalWalker-v3**
|
25 |
+
This is a trained model of a **PPO** agent playing **BipedalWalker-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dcb48182710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dcb481827a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dcb48182830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dcb481828c0>", "_build": "<function ActorCriticPolicy._build at 0x7dcb48182950>", "forward": "<function ActorCriticPolicy.forward at 0x7dcb481829e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dcb48182a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dcb48182b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7dcb48182b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dcb48182c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dcb48182cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dcb48182d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dcb48184bc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694820725008637150, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAABvnvT6uzKk9h9GBPsx2s7y4I/u9t02Gv7Qx8b73mIE+AACAP/dnbj8y5Vm/+MQ8P///fz8AAAAAYYalPs3Kpj6Dj6s+UtW0PrXhxD54xt0+/usBPwvOIj8s/14/AACAP+vq0j6AQeG93L/MPhxiHT1JhE2/AACfN4C0lL0RsCU/AAAAAHOTZz/gHiA++FYhP/v/fz8AAAAA2ceQPp94lD7D1ps+R3GnPjo3uj7WqNU+QS39PgZxIj+HFlk/AACAP7NgfT7bU+q9IZOSPrEy1bw/qFC/AACANARhXj5YuSc/AAAAALgUkz/3/38/YFJJP/P/fz8AAAAA2WWAPg7QgT4aW4Y+7B6OPuJMmj5p+68+fIHTPvi3CD+ojUI/AACAP7Xe5D3gYvE8Qd2JPk12Fb5rfJ6+Bq2YPbgq474Q2+q+AAAAAMw8lD8tyT4/eBYkvgAAgL8AAAAA5Y2xPqAktT5wJb4+9cPNPk495T6PcAE/Bz0dP2DBRj8AAIA/AACAP9OcJz9Y1eI7WquiPk1qTT0avVW/AABAM0Dr2zy798c9AACAP0gUjj89D6K+YjNRP+3kGb4AAAAA9KqsPnIyrj7jC7Q+Mky8Pl+vyD71sds+EHf9PtNRGz/PjVg/AACAP0Ti0TsyHxO+n7q1Pkq4GjyrEVO/kK9WPblMQz8AAIA/AAAAAADJlD/l/38/aFVvPwAAKLYAAIA/r9GMPoY1ij65kos+x7+QPtmomT52hqc+MTvBPvgE8D6r8R0/AACAP1Pw7j7E0og9MF2iPoNesb0Idf++jjuHv1D93r5H654+AACAPx8qiD98wBs/9ownPwAAgL8AAAAA+FOYPvVNnD5+AKQ+P/6wPiScxT4h0OU+S7EHPy6vKD/3020/AACAPzV+lz7vMSM9IXpzPmptxTx4lLi+/v9/v7zSkL5/dhY/AACAP47QhD+bpUA+LoE0PwAAgD8AAAAAfuKjPs5EpT7rmqs+Pfa3PnKmyj5yseY+alUHP1ggKD8vKls/AACAPwvMd72P+QM9vRSNPrujWbzQwVW/ACDlt1LOKj8z39O/AAAAAOZnkT8AAEg2oBu0Pq/+D78AAIA/2AqtPuwBrz7ZUrU+KMzAPs1C0z7r7e8+p6MNP8RFLT+kKmU/AACAPyYbxT7BY6g9JhskPs7UM73HsUm/9BAUPhBma74BAIC/AAAAAKwXiT/Z5wK/4HhevcdvUT8AAAAAShebPjxTmj56KJ8+KtKoPt/ztT7xpMg+lRvlPu5iCj+FOTk/AACAP5EQuT6ppaU63rigPs2AnzzDETW/+mwqv6yCuD6bCSk/AACAP7eFhj9XdBu/8kAePwAAgD8AAAAAsuG0PjIWtD4Pxbc+auW/PglRzT4EPOE+aiL/PvK1HD/s7k4/AACAP541pj7GhAa+GjLUPnjCrLxdEFS/AAAAAEAwLjxw2zQ/AAAAAI5Zij/GtAO/Bi9xP/z/fz8AAAAATP6HPkEzij5BF5A+r2eYPp2HpD4ILbg+bODUPjmDAD9qISY/AACAP2HzaL3Pblw9bSL7PSyeET4aSkm/7GdtPo1xIj///3+/AAAAAJM5kT8AAAAAdXlPP0UpUL8AAIA/X06lPrAnpj4Nfao+JiqyPjM1vj6WGM8+vIXqPgmWET/cNEw/AACAP0e9cT5FbLw8CKChPi+Iy708OE+/r+qkvw7OuD7z/38/AAAAAIB1jT8BoJ29PqhsP6uqKjIAAAAAU26cPh01nj6vXqQ+T3SvPj1awj6MUts+w4sAP8XlID8JclQ/AACAP8L79rxuGzc9JFgvPix0p7zb2mm+ptWRPhgidr4RuHC+AAAAALw2jj8AAAAAVhGMPnXzwr0AAAAA9Ra3Pt+3vD6BRsY+dS3UPltH6D7fVQQ/OIMcP3CnRT8AAIA/AACAP9gUFj4vCIQ9GlcsPvgcyb1H1hK+3s1Nv8BtkL6Ud5W+AACAP6dEkT8AAAAAZoAHP/v/fz8AAAAAeAixPuostD4kR7w+jA7IPpgH3D5sx/s+OAgTP3ynOD8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIZv5YYBNqMAWyUTUAGjAF0lEdAjm98XFcY7HV9lChoBkdAONhStNi6QWgHTY8FaAhHQI5wP4REnb91fZQoaAZHQGPwXS0BwMpoB01ABmgIR0COcjz1bqyGdX2UKGgGR0BgNMPlMh5gaAdNQAZoCEdAjno3kgfU4XV9lChoBkdAYg9WT5ftyGgHTUAGaAhHQI58JCOWBz51fZQoaAZHwEJ4sxO+IuZoB01bA2gIR0COfkaDPGADdX2UKGgGR8A681gYxcmjaAdN6gNoCEdAjoC1BUrCnHV9lChoBkfAXSrndO6/ZmgHS1BoCEdAjoJmHgxagXV9lChoBkdAX7i5AhStNmgHTUAGaAhHQI6FOorFwUB1fZQoaAZHQGGBLpJPIn1oB01ABmgIR0COiP5ZbILgdX2UKGgGR0Bi2oD9wWFfaAdNQAZoCEdAjomQ9RrJsHV9lChoBkdAYDzZaFEiMmgHTUAGaAhHQI6M5vo/zJ91fZQoaAZHwEy11M/QjUxoB00xAmgIR0COmQf5k9U0dX2UKGgGR0Bkcl2icoYvaAdNQAZoCEdAjpvuWKMvRXV9lChoBkdAYhLQMx46fmgHTUAGaAhHQI6iCtA9mpV1fZQoaAZHQGN0WLpA2Q5oB01ABmgIR0COp4eCkGiYdX2UKGgGR8BcioVM23rlaAdLX2gIR0COqXipeeFtdX2UKGgGR0Bh43hVENONaAdNQAZoCEdAjqm1ktmL+HV9lChoBkdAYYvwPRRdhWgHTUAGaAhHQI9evf642CN1fZQoaAZHwE4WNvOyE+RoB02bAWgIR0CPaZqDbrTqdX2UKGgGR0Bi1kLSeAd5aAdNQAZoCEdAj3Je4LCvYHV9lChoBkdAYwTRwZOzp2gHTUAGaAhHQI9zljAi3Xt1fZQoaAZHQGPsdOh0yQBoB01ABmgIR0CPdoaxX4j9dX2UKGgGR8BAurVnVXmvaAdNvQJoCEdAj38dfsu3+nV9lChoBkfAWM67oSteU2gHS39oCEdAj39526kIonV9lChoBkdAZECYtQKrrGgHTUAGaAhHQI+BUzbeuV51fZQoaAZHQGFFCwKSgXdoB01ABmgIR0CPh1oSL61tdX2UKGgGR0BjoC15Sm65aAdNQAZoCEdAj4ka7EpAlnV9lChoBkdAYFkM1jy4F2gHTUAGaAhHQI+L2eMAFPl1fZQoaAZHwFClf2saKk5oB03TAWgIR0CPjXx//echdX2UKGgGR0BhjHnOjZctaAdNQAZoCEdAj4+ge7tiQXV9lChoBkfAXRqf7JnxrmgHS0xoCEdAj4/ycTakAXV9lChoBkfASMXA0sOG02gHTXQCaAhHQI+QMQ04zad1fZQoaAZHQGKvIAOrhitoB01ABmgIR0CPkFEroW56dX2UKGgGR8BaPW9QGfPHaAdLMmgIR0CPktjrAxi5dX2UKGgGR0Bi3VjbzshQaAdNQAZoCEdAj5OkUsWfsnV9lChoBkfAXM4VUMoc72gHS1BoCEdAj5P611GLDXV9lChoBkfAW5W6asp5NWgHS0loCEdAj5bVUlzEJnV9lChoBkdAYpmQlKK51GgHTUAGaAhHQI+fn6be/Hp1fZQoaAZHQGUdgHE/B31oB01ABmgIR0CPokoJAt4BdX2UKGgGR8BWpYb4rSVoaAdLjWgIR0CPqPB55Z8sdX2UKGgGR0BhUmfmLcbjaAdNQAZoCEdAj6roxgy/K3V9lChoBkdAY+xQiRnvlWgHTUAGaAhHQI+28BCD28J1fZQoaAZHwFubE0zj3mFoB0tHaAhHQI+6ev4dp7F1fZQoaAZHwFfs7PIGQjloB0tsaAhHQI+/lLHuJDV1fZQoaAZHQDQGTcIqsltoB00oBWgIR0CPwetyxRl6dX2UKGgGR0BiPq8e0XxfaAdNQAZoCEdAj8d3WFvhqHV9lChoBkfAQG7RWtEG7mgHTekEaAhHQI/IqvRqoIh1fZQoaAZHQGPfRpL26CloB01ABmgIR0CQP1A4GUwBdX2UKGgGR0Bh9CbF0gbIaAdNQAZoCEdAkECM+A3DN3V9lChoBkdAYoD1Oj7AL2gHTUAGaAhHQJBDkzxgAp91fZQoaAZHQGFv8TJyQxNoB01ABmgIR0CQRoYyfthNdX2UKGgGR8BZPSRr8BMjaAdLgWgIR0CQRrAqd6LPdX2UKGgGR0Bj1RGlQ/HHaAdNQAZoCEdAkEee54GD+XV9lChoBkdAZKVgssg+yWgHTUAGaAhHQJBHvr8iwB51fZQoaAZHQGRBr6ciGFloB01ABmgIR0CQSVzbvgFYdX2UKGgGR0Bi70o8ZDRdaAdNQAZoCEdAkEmED2alUXV9lChoBkdAZBVLq2SdOWgHTUAGaAhHQJBLhptaY/p1fZQoaAZHwFwfovi97F9oB0s+aAhHQJBLqHzpX6t1fZQoaAZHQGEhpd8iOedoB01ABmgIR0CQUloaUA1fdX2UKGgGR0BihQMWoFV1aAdNQAZoCEdAkFgIWxhUi3V9lChoBkdAYRdWattALWgHTUAGaAhHQJBY+F36hxp1fZQoaAZHQGOzNCqp97ZoB01ABmgIR0CQYqGc4HX3dX2UKGgGR0BkP0UsWfseaAdNQAZoCEdAkGPrRSgoPXV9lChoBkfAWgjb48EFGGgHSzNoCEdAkGVGois4k3V9lChoBkdAYijOX3QD3mgHTUAGaAhHQJBm3VJ+UhV1fZQoaAZHQFwEAaef7JpoB01ABmgIR0CQZ3COFQEZdX2UKGgGR0Bj3ARPGhmHaAdNQAZoCEdAkGrbKvFFUnV9lChoBkfAWjh/7SApa2gHSy1oCEdAkGw/vv0AcXV9lChoBkdAZRGcmShakmgHTUAGaAhHQJBsQ1Muez51fZQoaAZHP9swztTkyUNoB02iBWgIR0CQbo4keIVNdX2UKGgGR8BXqePJaJQ+aAdLY2gIR0CQbqk9ECvHdX2UKGgGR0Bh+WwNb1RMaAdNQAZoCEdAkHIwHu7YkHV9lChoBkdAZgWpJf6XSmgHTUAGaAhHQJDJFj3Ehq11fZQoaAZHQGIaHeJpFkRoB01ABmgIR0CQyTbkfcN6dX2UKGgGR0BloZ+2E0zkaAdNQAZoCEdAkMro2XLNfXV9lChoBkdAZGIR/ViF02gHTUAGaAhHQJDMWNipeeF1fZQoaAZHQGNVKvNeMQ5oB01ABmgIR0CQzHOVgQYldX2UKGgGR0Bhju/UONHZaAdNQAZoCEdAkNCqgRK6F3V9lChoBkfAWherKeTV2GgHS3toCEdAkNOjDXOGCnV9lChoBkdAY8ZEit7rs2gHTUAGaAhHQJDVZs67ulZ1fZQoaAZHQGYtSxA0KqpoB01ABmgIR0CQ1lkN4JNTdX2UKGgGR8A7xSDAaef7aAdNUANoCEdAkN3izTnaFnV9lChoBkdANZdZ7ojfN2gHTZgEaAhHQJDetsQ/X5F1fZQoaAZHwFqp94/u9e1oB0sqaAhHQJDf2l67dzp1fZQoaAZHwF0fTRplBhRoB0tQaAhHQJDgAwdsBQx1fZQoaAZHQGYcepXIU8FoB01ABmgIR0CQ4EbS7Xg+dX2UKGgGR0BjunoC+10DaAdNQAZoCEdAkOQmDUVi4XV9lChoBkdAYbghMajveGgHTUAGaAhHQJDmmv+wTuh1fZQoaAZHQGQciXyAhB9oB01ABmgIR0CQ54FgUlAvdX2UKGgGR8BccURJ2+wlaAdLVWgIR0CQ6hKujh1ldX2UKGgGR0BjgRwKjSG8aAdNQAZoCEdAkO+LbL2YfHV9lChoBkdAY8wws5GSZGgHTUAGaAhHQJDvpe/pMYd1fZQoaAZHwFgA7JW/8EVoB0tkaAhHQJDyD5ZbILh1fZQoaAZHQFC7QYUFjd5oB036BWgIR0CQ8rK9wm3OdX2UKGgGR0Bl78/dIoVmaAdNQAZoCEdAkPNVmBe5WnV9lChoBkdAZcfTnaFmF2gHTUAGaAhHQJD2SBoVVPx1fZQoaAZHwFeqRNyo4uNoB0uJaAhHQJD2vt/nW8R1fZQoaAZHQGV5+eOGTLZoB01ABmgIR0CQ95sabWmQdX2UKGgGR0Bk9WuX/o7naAdNQAZoCEdAkPe1j7Q9inVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVRgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBAolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgUSxiFlGgYdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoECiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLGIWUaBh0lFKUjARoaWdolGgQKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksYhZRoGHSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "_shape": [24], "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVoQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (329 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 169.49534529630108, "std_reward": 155.5542038384289, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-15T23:52:56.921247"}
|