Upload DQN MountainCar-v0 trained agent
Browse files- DQN-MountainCar-v0.zip +3 -0
- DQN-MountainCar-v0/_stable_baselines3_version +1 -0
- DQN-MountainCar-v0/data +120 -0
- DQN-MountainCar-v0/policy.optimizer.pth +3 -0
- DQN-MountainCar-v0/policy.pth +3 -0
- DQN-MountainCar-v0/pytorch_variables.pth +3 -0
- DQN-MountainCar-v0/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
DQN-MountainCar-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:112d5bea45fc36c07c2e7bcbc109e4621e1d4f4b60e107f196bc6336318a0e44
|
3 |
+
size 1105089
|
DQN-MountainCar-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
DQN-MountainCar-v0/data
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7fa035c72200>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7fa035c72290>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7fa035c72320>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7fa035c723b0>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7fa035c72440>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fa035c724d0>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fa035c72560>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_impl": "<_abc_data object at 0x7fa035c63420>"
|
16 |
+
},
|
17 |
+
"verbose": 1,
|
18 |
+
"policy_kwargs": {
|
19 |
+
"net_arch": [
|
20 |
+
256,
|
21 |
+
256
|
22 |
+
]
|
23 |
+
},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
2
|
30 |
+
],
|
31 |
+
"low": "[-1.2 -0.07]",
|
32 |
+
"high": "[0.6 0.07]",
|
33 |
+
"bounded_below": "[ True True]",
|
34 |
+
"bounded_above": "[ True True]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAJ6TSe+sv+HzbKuWjLQEamU9eSnLasstpSAtpvWcKEST+ejBu2gUMyUNNS/4XTXctIDsWP6bLiH8bah6huj759Yv8YGFcHWYQvqGpU5MUx+eks4/71GwuA91ZwmCSZGx7bsiNS5okZfoL1LVuy/gRS+Q+NfuzlVCVaAza9DzvVmsjgYO9ICS0HSFftJUd5cuLrhKYIrVfedO9niahqp0hkcFmUHIR6b15vsdq/wdwXtbtdjkE0zpbxX2eEGu6VHcE6FDAEkvMExdnKuHyf6kRRXOjnmigi6C0iqtfpOcQKSRzuDLEq1+25hZ5n0UO+kME/kw35sHWXYoHIOdGM5XaSc2HpkgyBgRKlCGC2zUxxIa+w6PykwtQHkw3kfPG2eGadjqXyth9pgS2/hv6WzTLQdGq2plDWtkVelvSolrHo3aCcEHTzJOr5eR0PquOyUl+L0J6x74L77Ajw/D0yCMvRVyE48LP/b9VR2pJUL1tYtnbuD2uonQOGbNXBb5Icn3PFZTQqoY8ROvPUGPZ9iDL1d7rjqhlqOIAYyEb0zwF3OSFPjLL8ywB0WMXHgzqMMHt4e6nYc5bmy/tOP39k8JebgK0zr9AcwNS8og4Fqcu3rHM/P1dUGgOn5Na8d69356+smjvzmJw73Ap/Za+J93zmjvyqy8CAPh4kxJEV+dkj60KjlxIgpphuD8R1p0aMni4BEKCkNRzpF27Lh/BOB2dE8KF4B3ZCCUqhGZZNeWNNpxhyUN0I0DBvcCIWxIl/e8+FX22ZxBMKR8qLqWzUs2tbO0AM+f50lXb9msSxekk916mbPzKioYdKb4Y3RkF01/3wNJnx5W3pBzAx7VBc64mT+dCEf96McUy0vhlD8J2hTpWwLQRUgeR7wJAjgx1+2ToGUgqdTWkT9bwwzkkyhSHh6oRmGJwCCovmY6bsafLnUzO3kiUJpbuUDDkoyACCrX2TOFtOTJ0gyqZIc0J9P2pIQnuCK9U3F0jk6V1pNRR8fplSf9w6zh5A7IiaQ5nDYC+HvmJgxA95gf7iI12Kg0y5xk3XwmwrpToqglwxmUYG6iIKc8NIVABSviVGJ8UsQ+aVf2AN27TXhLrSv8SSCdJhhpcK7JcsKHjp8Ov0ccTVW7lZBQ+hSyEJMP+H/UcUI5rL2krCp7frU/jSfJvwAGUxpBXpXQqhVOq7Pt0lbwVgd4cnYe1GRha3Z4j26URmH5VMBDJFwW6cYnooMhA9qnYM3iOOE/LamhU8yyvVrXxRTQnH0fIpC4LSO2XFOxMNAm2SOzG2iBN3hqyvejFDevlY2pg3jZFlRAD8oVAR8NBCTd5hUNlO7m2jsmPLnWH5FUQolSEiirhgGgSDf5qxS6L/uaIfhE9Ba8axIEuocZon3rSLO6fzrFYV2KhMRo0It9zBKR4HHmkW/r1qQf9xPVS8aApGb/XmdEWZmCg2krc4En4m5BDq3lDecImBeQErCHOXkgR6tiP4pqvSKR6PwaDxvE703tI3kaJTA915pjd6NrcQS05VpWOljBNsGZdiX0i0l1VYQB8kGPkGONwHQ1aZoKMSdyPsVHKqpj9nmnoa+RYOo0nXv2QGug3dJKZVHKNcrgazs9YH14QZChs2MejQ85WnJEYECh/ORWQt0imyjCRxjdaOzi0d3H9tfGRBZQ4dA89+Pyr5sLyK4/X623vpVb2xG3fVlk6Pxet64+BsMtJ0EugITWCundq5lYU9vSyQHqa1CwO9luDSK3E1LC42Cg04GtRIaJenmqvvUqGHVfZ+/qmVVP+d6CX3S8mI8jXJ7ifTlM7UDkr4lZKokxxACykzaFtjrzlNIAmIGtJxK8L8zZhWMFMKnzUTqwDOJVtDyKUk3JShiLEN/ETNzrTHVuAYk0ZpVmmsidVdNodMyrngJ/tjwFSgF8XbVXW6xB+91jgv8t6jdbkTv4l4XfRDSB8M9SQetrgy6QClBJAts0A3Ju9nfA4YAnGtSWlpaztMoIbRwkX/yrkvlZNXG3F94YXXgk9fGBOzauudfRljhcddIkwjkr/dzGXvHySNsjb6MHHbsMwO+nbjGCAdcuLAYR+ppf0eyKYcHgnzDRuZEquyh8Su0ee0HucgeRH9yW/BeVPRRh3EtaHgrDkTFsF8B0oVHJ+e3OORQalPfN/Pjv+7xdpoHiHBMGg1KrAukA4ESTPB09pAd+R28dV3/tZ6EWDzdeFxrTg4kwjpwloyyQnFS7xXzH8R3xv8jA/0IMIMZWqjXKreb1EHa969TAP9U53zfwqi6mEt40PKcnYX081pTofiaJKUl0cGYNCSZUzXBGzopUPfNfit1ohROxHD0oUgtdNhTFhBMWGblfMQfMGmMjWYD6/WumivRiTeHY3euimiqOWG6wKooNQHjLNE5zFdJmJkRYwKWshopoPE2eSChG1ZLHWB989w1NP87HR2x/RF+/NStlkgh83+niazGGRIksWH4gdlChQqBv16/BETYf62I/7UbLJwhby15y75cUgpyGSJJ7NRUddtyEG+ESD5CWuz8lhCgo7lH+QKeob14m5izss2UXB5ZhLpH4wIMY61+p8FqCRdGaRx3zPaT6Yw8zexHXSHiEg6/lODhrkYhBqeJu4gk5r9lg8ZFPinKfpa4ql2OGlxejhGmtkvJW4p7euEx92aBq558SeIe+tToKVmOPwbdTwKtIZVlCR7LqwhnqgpxBYv5AhLf+KnNgpN+lilOmH0BvqJCobvoh8qUSnwgYCzbUQR8ZGJNA3OmmBIyYvi4Kp/C2p9lnRUaV6+qiqlgz+FxtCR3tUCUjmhtdExpjLnCJsXGCmLhC0hFKVF4MRMYJ6Tm9xvh1anyc7V2vh6YByoVx4/+ul1KCPsqrl74M08eclRbSnBqf6LPdum53jglWdFkIskT8W+JMsdlle8aKNuUhroHwJmk+mEP2sKaW/dl1pGqaDsM5jJm6sqvvOIeWhA+PMTjYvXh+21P59+qtYZMKDwmNSjmbIYYcmOliop2oD/oTw1NS93eWcHBGcrfjh0RthYsFmb9ZZL3GSCDGt2J06wAIF+80g6zonmBpRwVjH93aghxILPuV1RlhDdk06lIZYZP3RPy4b9S0n1U5wZdxZNZPunHaRwwjTaFZ/dNdbk2KdVJ60tt45+pbXy6y4lO0tcdyh0a/r0SJEcqZuxPMJwXc4dpBARqW7H2dU6/wbDGXojKhNMcNArRgg/Q3OEKZp/ip9JWdNFj8qq01mOTFwxkIKF8B46kmTM2hVqDWm58uTjDYRLDksTtlRDBwCzwefNOFzdazMQylj6qlQnvdaybcBS+DtV3EvQ8Sy3cUMDoPJB66hlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNXQF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
40 |
+
"n": 3,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": "RandomState(MT19937)"
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 100096,
|
47 |
+
"_total_timesteps": 100000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1658318201.2863996,
|
52 |
+
"learning_rate": 0.004,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAEm9uj5L/gc9+fTbvhC1ubr6kCO/qRTVu0ts+L5Agxm6FWwbv4+wED3lRNi+OjNlvU+eAr/z4C67AJLfvigdrLorg3G/56SXurrlOL8cWEC9er3lvsRuALwAXPm+8Rrzuumter+OWwu7xIwlv4UaAz28rQ6/lLL0OcMTQr/IcKo8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAH+9qT4Kegk9RDvbvqZgOrrR5iG/n1rvu4of+L4oFpq5HnckvwgFCT1+nru+KqVkvW7vAb+K/ya74+Xeviu9LLpYN3G/hJKUuzjgLL/u8Ei9BLrhvhm+7LvlaPi+wGrNuo0ier/Ej7a7bL4tv5/T9DxSzA6/YttcOUlnR78ZDZQ8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
|
69 |
+
},
|
70 |
+
"_episode_num": 520,
|
71 |
+
"use_sde": false,
|
72 |
+
"sde_sample_freq": -1,
|
73 |
+
"_current_progress_remaining": -0.0009600000000000719,
|
74 |
+
"ep_info_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFtAAAAAAACMAWyUS22MAXSUR0BlKKA8SwnqdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BlKI7FKkEcdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0BlKL/lyR0VdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BlKPFkxyn2dX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BlKf7YTTOPdX2UKGgGR8BfwAAAAAAAaAdLf2gIR0BlKgwsXizcdX2UKGgGR8BgAAAAAAAAaAdLgGgIR0BlKhJ04iosdX2UKGgGR8BgAAAAAAAAaAdLgGgIR0BlKgwIt16mdX2UKGgGR8BgYAAAAAAAaAdLg2gIR0BlKou9OARTdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0BlKps/IKc/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlMGSGJvYOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlMFwFTvRadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlOig00m+kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlOmZ7XxvvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlOxYPoV2zdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlOy8tf5UMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlOyxJNCZ4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlOxrxiG34dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlO11IRRMwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlO4JRfnfVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlO8YuTRpldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlO9/4IrvtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlO+KQ7tAtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlO9vS+g14dX2UKGgGR8BooAAAAAAAaAdLxWgIR0BlPQeaKDTSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlPRxR2r4ndX2UKGgGR8BjwAAAAAAAaAdLnmgIR0BlPtO45Lh8dX2UKGgGR8BjoAAAAAAAaAdLnWgIR0BlPsBKcurZdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0BlSGJUHY6GdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BlSFFKCg9NdX2UKGgGR8BiYAAAAAAAaAdLk2gIR0BlSDsQd0aIdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0BlSKOinHeadX2UKGgGR8BiwAAAAAAAaAdLlmgIR0BlSI7xNIsidX2UKGgGR8BiQAAAAAAAaAdLkmgIR0BlSNbu+h4/dX2UKGgGR8BjwAAAAAAAaAdLnmgIR0BlSR1klNUPdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BlSQI0IkZ8dX2UKGgGR8BjYAAAAAAAaAdLm2gIR0BlSPSro4dZdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0BlTQuscQyzdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0BlTQDmr8zidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTjx0+1SgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTlyLhrFgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTlaEBbOedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTpsdkrf+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTqyrxRVIdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0BlV/JxNqQBdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0BlWGbCrLhadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWd4keIVNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWcyzollcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWbZxrBTGdX2UKGgGR8BggAAAAAAAaAdLhGgIR0BlWicXm/34dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWk9U0elsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWjqjafz0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWzuc+aBqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlW3nB+F10dX2UKGgGR8BoQAAAAAAAaAdLwmgIR0BlXizqrzXjdX2UKGgGR8BmYAAAAAAAaAdLs2gIR0BlXlHavicYdX2UKGgGR8BnQAAAAAAAaAdLumgIR0BlXnYjB2wFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlXo1pCa7VdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlX/mozeoDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlX/Lmp2lmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Blaa4vvjOtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlaqB06o2odX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlbB9JBgNPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlbA4CIUJwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bla/fwZwXJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlbGzv7WNFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlbJXr+o9+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlbIMx46fbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlbOnuRcNZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlbU32mHgxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlcQRujynUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlcSi7CiyqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlcUxwhnrZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlcXBWPtD2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlcrlRxcVydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlcrLZBcAzdX2UKGgGR8BZgAAAAAAAaAdLZmgIR0BlegD3dsSCdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0BlehM8HObBdX2UKGgGR8BkIAAAAAAAaAdLoWgIR0BleuvbGm1qdX2UKGgGR8BigAAAAAAAaAdLlGgIR0BleyHqNZNgdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0Ble1Ed/8VIdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0Ble0tqYZ2qdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0Blez6ab4JvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlfH0EovzwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlfmpsGgSOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlflkSVW0adX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlfoY77sOYdX2UKGgGR8BkIAAAAAAAaAdLoWgIR0Blf5oGpuMudX2UKGgGR8BkoAAAAAAAaAdLpWgIR0Blf7rAxi5NdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0BlgBmkFfRedX2UKGgGR8BnAAAAAAAAaAdLuGgIR0BlgYYk3S8bdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlhAoPTXrddX2UKGgGR8BmgAAAAAAAaAdLtGgIR0Bli1U6xPfsdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0Bli1nf2saLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BljGxwAEMcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BljHw1BMSLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BljM7r9l3AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BljSeiBXjmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BljSDyvs7ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BljRLkCFK1dWUu"
|
77 |
+
},
|
78 |
+
"ep_success_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
81 |
+
},
|
82 |
+
"_n_updates": 3104,
|
83 |
+
"buffer_size": 10000,
|
84 |
+
"batch_size": 128,
|
85 |
+
"learning_starts": 1000,
|
86 |
+
"tau": 1.0,
|
87 |
+
"gamma": 0.98,
|
88 |
+
"gradient_steps": 8,
|
89 |
+
"optimize_memory_usage": false,
|
90 |
+
"replay_buffer_class": {
|
91 |
+
":type:": "<class 'abc.ABCMeta'>",
|
92 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
93 |
+
"__module__": "stable_baselines3.common.buffers",
|
94 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
95 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fa035cc4950>",
|
96 |
+
"add": "<function ReplayBuffer.add at 0x7fa035cc49e0>",
|
97 |
+
"sample": "<function ReplayBuffer.sample at 0x7fa035cc4a70>",
|
98 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fa035cc4b00>",
|
99 |
+
"__abstractmethods__": "frozenset()",
|
100 |
+
"_abc_impl": "<_abc_data object at 0x7fa035cbd2d0>"
|
101 |
+
},
|
102 |
+
"replay_buffer_kwargs": {},
|
103 |
+
"train_freq": {
|
104 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
105 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
106 |
+
},
|
107 |
+
"actor": null,
|
108 |
+
"use_sde_at_warmup": false,
|
109 |
+
"exploration_initial_eps": 1.0,
|
110 |
+
"exploration_final_eps": 0.07,
|
111 |
+
"exploration_fraction": 0.2,
|
112 |
+
"target_update_interval": 37,
|
113 |
+
"_n_calls": 6256,
|
114 |
+
"max_grad_norm": 10,
|
115 |
+
"exploration_rate": 0.07,
|
116 |
+
"exploration_schedule": {
|
117 |
+
":type:": "<class 'function'>",
|
118 |
+
":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7HrhR64UeyFlFKUaDhHP8mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
119 |
+
}
|
120 |
+
}
|
DQN-MountainCar-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95a1f8db4a6d41dcb4866eb4848f1f2283e6534bb9b647de4a907c45e12e33ae
|
3 |
+
size 543599
|
DQN-MountainCar-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:092748f25341ebed519061ff3b45de97e00e05160cf45b7ee55684614fe3e08a
|
3 |
+
size 542721
|
DQN-MountainCar-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
DQN-MountainCar-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -166.80 +/- 21.94
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: MountainCar-v0
|
20 |
+
type: MountainCar-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **DQN** Agent playing **MountainCar-v0**
|
24 |
+
This is a trained model of a **DQN** agent playing **MountainCar-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7fa035c72200>", "_build": "<function DQNPolicy._build at 0x7fa035c72290>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7fa035c72320>", "forward": "<function DQNPolicy.forward at 0x7fa035c723b0>", "_predict": "<function DQNPolicy._predict at 0x7fa035c72440>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fa035c724d0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fa035c72560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa035c63420>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAJ6TSe+sv+HzbKuWjLQEamU9eSnLasstpSAtpvWcKEST+ejBu2gUMyUNNS/4XTXctIDsWP6bLiH8bah6huj759Yv8YGFcHWYQvqGpU5MUx+eks4/71GwuA91ZwmCSZGx7bsiNS5okZfoL1LVuy/gRS+Q+NfuzlVCVaAza9DzvVmsjgYO9ICS0HSFftJUd5cuLrhKYIrVfedO9niahqp0hkcFmUHIR6b15vsdq/wdwXtbtdjkE0zpbxX2eEGu6VHcE6FDAEkvMExdnKuHyf6kRRXOjnmigi6C0iqtfpOcQKSRzuDLEq1+25hZ5n0UO+kME/kw35sHWXYoHIOdGM5XaSc2HpkgyBgRKlCGC2zUxxIa+w6PykwtQHkw3kfPG2eGadjqXyth9pgS2/hv6WzTLQdGq2plDWtkVelvSolrHo3aCcEHTzJOr5eR0PquOyUl+L0J6x74L77Ajw/D0yCMvRVyE48LP/b9VR2pJUL1tYtnbuD2uonQOGbNXBb5Icn3PFZTQqoY8ROvPUGPZ9iDL1d7rjqhlqOIAYyEb0zwF3OSFPjLL8ywB0WMXHgzqMMHt4e6nYc5bmy/tOP39k8JebgK0zr9AcwNS8og4Fqcu3rHM/P1dUGgOn5Na8d69356+smjvzmJw73Ap/Za+J93zmjvyqy8CAPh4kxJEV+dkj60KjlxIgpphuD8R1p0aMni4BEKCkNRzpF27Lh/BOB2dE8KF4B3ZCCUqhGZZNeWNNpxhyUN0I0DBvcCIWxIl/e8+FX22ZxBMKR8qLqWzUs2tbO0AM+f50lXb9msSxekk916mbPzKioYdKb4Y3RkF01/3wNJnx5W3pBzAx7VBc64mT+dCEf96McUy0vhlD8J2hTpWwLQRUgeR7wJAjgx1+2ToGUgqdTWkT9bwwzkkyhSHh6oRmGJwCCovmY6bsafLnUzO3kiUJpbuUDDkoyACCrX2TOFtOTJ0gyqZIc0J9P2pIQnuCK9U3F0jk6V1pNRR8fplSf9w6zh5A7IiaQ5nDYC+HvmJgxA95gf7iI12Kg0y5xk3XwmwrpToqglwxmUYG6iIKc8NIVABSviVGJ8UsQ+aVf2AN27TXhLrSv8SSCdJhhpcK7JcsKHjp8Ov0ccTVW7lZBQ+hSyEJMP+H/UcUI5rL2krCp7frU/jSfJvwAGUxpBXpXQqhVOq7Pt0lbwVgd4cnYe1GRha3Z4j26URmH5VMBDJFwW6cYnooMhA9qnYM3iOOE/LamhU8yyvVrXxRTQnH0fIpC4LSO2XFOxMNAm2SOzG2iBN3hqyvejFDevlY2pg3jZFlRAD8oVAR8NBCTd5hUNlO7m2jsmPLnWH5FUQolSEiirhgGgSDf5qxS6L/uaIfhE9Ba8axIEuocZon3rSLO6fzrFYV2KhMRo0It9zBKR4HHmkW/r1qQf9xPVS8aApGb/XmdEWZmCg2krc4En4m5BDq3lDecImBeQErCHOXkgR6tiP4pqvSKR6PwaDxvE703tI3kaJTA915pjd6NrcQS05VpWOljBNsGZdiX0i0l1VYQB8kGPkGONwHQ1aZoKMSdyPsVHKqpj9nmnoa+RYOo0nXv2QGug3dJKZVHKNcrgazs9YH14QZChs2MejQ85WnJEYECh/ORWQt0imyjCRxjdaOzi0d3H9tfGRBZQ4dA89+Pyr5sLyK4/X623vpVb2xG3fVlk6Pxet64+BsMtJ0EugITWCundq5lYU9vSyQHqa1CwO9luDSK3E1LC42Cg04GtRIaJenmqvvUqGHVfZ+/qmVVP+d6CX3S8mI8jXJ7ifTlM7UDkr4lZKokxxACykzaFtjrzlNIAmIGtJxK8L8zZhWMFMKnzUTqwDOJVtDyKUk3JShiLEN/ETNzrTHVuAYk0ZpVmmsidVdNodMyrngJ/tjwFSgF8XbVXW6xB+91jgv8t6jdbkTv4l4XfRDSB8M9SQetrgy6QClBJAts0A3Ju9nfA4YAnGtSWlpaztMoIbRwkX/yrkvlZNXG3F94YXXgk9fGBOzauudfRljhcddIkwjkr/dzGXvHySNsjb6MHHbsMwO+nbjGCAdcuLAYR+ppf0eyKYcHgnzDRuZEquyh8Su0ee0HucgeRH9yW/BeVPRRh3EtaHgrDkTFsF8B0oVHJ+e3OORQalPfN/Pjv+7xdpoHiHBMGg1KrAukA4ESTPB09pAd+R28dV3/tZ6EWDzdeFxrTg4kwjpwloyyQnFS7xXzH8R3xv8jA/0IMIMZWqjXKreb1EHa969TAP9U53zfwqi6mEt40PKcnYX081pTofiaJKUl0cGYNCSZUzXBGzopUPfNfit1ohROxHD0oUgtdNhTFhBMWGblfMQfMGmMjWYD6/WumivRiTeHY3euimiqOWG6wKooNQHjLNE5zFdJmJkRYwKWshopoPE2eSChG1ZLHWB989w1NP87HR2x/RF+/NStlkgh83+niazGGRIksWH4gdlChQqBv16/BETYf62I/7UbLJwhby15y75cUgpyGSJJ7NRUddtyEG+ESD5CWuz8lhCgo7lH+QKeob14m5izss2UXB5ZhLpH4wIMY61+p8FqCRdGaRx3zPaT6Yw8zexHXSHiEg6/lODhrkYhBqeJu4gk5r9lg8ZFPinKfpa4ql2OGlxejhGmtkvJW4p7euEx92aBq558SeIe+tToKVmOPwbdTwKtIZVlCR7LqwhnqgpxBYv5AhLf+KnNgpN+lilOmH0BvqJCobvoh8qUSnwgYCzbUQR8ZGJNA3OmmBIyYvi4Kp/C2p9lnRUaV6+qiqlgz+FxtCR3tUCUjmhtdExpjLnCJsXGCmLhC0hFKVF4MRMYJ6Tm9xvh1anyc7V2vh6YByoVx4/+ul1KCPsqrl74M08eclRbSnBqf6LPdum53jglWdFkIskT8W+JMsdlle8aKNuUhroHwJmk+mEP2sKaW/dl1pGqaDsM5jJm6sqvvOIeWhA+PMTjYvXh+21P59+qtYZMKDwmNSjmbIYYcmOliop2oD/oTw1NS93eWcHBGcrfjh0RthYsFmb9ZZL3GSCDGt2J06wAIF+80g6zonmBpRwVjH93aghxILPuV1RlhDdk06lIZYZP3RPy4b9S0n1U5wZdxZNZPunHaRwwjTaFZ/dNdbk2KdVJ60tt45+pbXy6y4lO0tcdyh0a/r0SJEcqZuxPMJwXc4dpBARqW7H2dU6/wbDGXojKhNMcNArRgg/Q3OEKZp/ip9JWdNFj8qq01mOTFwxkIKF8B46kmTM2hVqDWm58uTjDYRLDksTtlRDBwCzwefNOFzdazMQylj6qlQnvdaybcBS+DtV3EvQ8Sy3cUMDoPJB66hlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNXQF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 3, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 100096, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658318201.2863996, "learning_rate": 0.004, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAEm9uj5L/gc9+fTbvhC1ubr6kCO/qRTVu0ts+L5Agxm6FWwbv4+wED3lRNi+OjNlvU+eAr/z4C67AJLfvigdrLorg3G/56SXurrlOL8cWEC9er3lvsRuALwAXPm+8Rrzuumter+OWwu7xIwlv4UaAz28rQ6/lLL0OcMTQr/IcKo8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAH+9qT4Kegk9RDvbvqZgOrrR5iG/n1rvu4of+L4oFpq5HnckvwgFCT1+nru+KqVkvW7vAb+K/ya74+Xeviu9LLpYN3G/hJKUuzjgLL/u8Ei9BLrhvhm+7LvlaPi+wGrNuo0ier/Ej7a7bL4tv5/T9DxSzA6/YttcOUlnR78ZDZQ8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_episode_num": 520, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0009600000000000719, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFtAAAAAAACMAWyUS22MAXSUR0BlKKA8SwnqdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BlKI7FKkEcdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0BlKL/lyR0VdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BlKPFkxyn2dX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BlKf7YTTOPdX2UKGgGR8BfwAAAAAAAaAdLf2gIR0BlKgwsXizcdX2UKGgGR8BgAAAAAAAAaAdLgGgIR0BlKhJ04iosdX2UKGgGR8BgAAAAAAAAaAdLgGgIR0BlKgwIt16mdX2UKGgGR8BgYAAAAAAAaAdLg2gIR0BlKou9OARTdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0BlKps/IKc/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlMGSGJvYOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlMFwFTvRadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlOig00m+kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlOmZ7XxvvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlOxYPoV2zdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlOy8tf5UMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlOyxJNCZ4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlOxrxiG34dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlO11IRRMwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlO4JRfnfVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlO8YuTRpldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlO9/4IrvtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlO+KQ7tAtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlO9vS+g14dX2UKGgGR8BooAAAAAAAaAdLxWgIR0BlPQeaKDTSdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlPRxR2r4ndX2UKGgGR8BjwAAAAAAAaAdLnmgIR0BlPtO45Lh8dX2UKGgGR8BjoAAAAAAAaAdLnWgIR0BlPsBKcurZdX2UKGgGR8BiIAAAAAAAaAdLkWgIR0BlSGJUHY6GdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BlSFFKCg9NdX2UKGgGR8BiYAAAAAAAaAdLk2gIR0BlSDsQd0aIdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0BlSKOinHeadX2UKGgGR8BiwAAAAAAAaAdLlmgIR0BlSI7xNIsidX2UKGgGR8BiQAAAAAAAaAdLkmgIR0BlSNbu+h4/dX2UKGgGR8BjwAAAAAAAaAdLnmgIR0BlSR1klNUPdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BlSQI0IkZ8dX2UKGgGR8BjYAAAAAAAaAdLm2gIR0BlSPSro4dZdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0BlTQuscQyzdX2UKGgGR8Bj4AAAAAAAaAdLn2gIR0BlTQDmr8zidX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTjx0+1SgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTlyLhrFgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTlaEBbOedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTpsdkrf+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlTqyrxRVIdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0BlV/JxNqQBdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0BlWGbCrLhadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWd4keIVNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWcyzollcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWbZxrBTGdX2UKGgGR8BggAAAAAAAaAdLhGgIR0BlWicXm/34dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWk9U0elsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWjqjafz0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlWzuc+aBqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlW3nB+F10dX2UKGgGR8BoQAAAAAAAaAdLwmgIR0BlXizqrzXjdX2UKGgGR8BmYAAAAAAAaAdLs2gIR0BlXlHavicYdX2UKGgGR8BnQAAAAAAAaAdLumgIR0BlXnYjB2wFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlXo1pCa7VdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlX/mozeoDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlX/Lmp2lmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Blaa4vvjOtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlaqB06o2odX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlbB9JBgNPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlbA4CIUJwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bla/fwZwXJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlbGzv7WNFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlbJXr+o9+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlbIMx46fbdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlbOnuRcNZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlbU32mHgxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlcQRujynUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlcSi7CiyqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlcUxwhnrZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlcXBWPtD2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlcrlRxcVydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlcrLZBcAzdX2UKGgGR8BZgAAAAAAAaAdLZmgIR0BlegD3dsSCdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0BlehM8HObBdX2UKGgGR8BkIAAAAAAAaAdLoWgIR0BleuvbGm1qdX2UKGgGR8BigAAAAAAAaAdLlGgIR0BleyHqNZNgdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0Ble1Ed/8VIdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0Ble0tqYZ2qdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0Blez6ab4JvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlfH0EovzwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlfmpsGgSOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlflkSVW0adX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlfoY77sOYdX2UKGgGR8BkIAAAAAAAaAdLoWgIR0Blf5oGpuMudX2UKGgGR8BkoAAAAAAAaAdLpWgIR0Blf7rAxi5NdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0BlgBmkFfRedX2UKGgGR8BnAAAAAAAAaAdLuGgIR0BlgYYk3S8bdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BlhAoPTXrddX2UKGgGR8BmgAAAAAAAaAdLtGgIR0Bli1U6xPfsdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0Bli1nf2saLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BljGxwAEMcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BljHw1BMSLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BljM7r9l3AdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BljSeiBXjmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BljSDyvs7ddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BljRLkCFK1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3104, "buffer_size": 10000, "batch_size": 128, "learning_starts": 1000, "tau": 1.0, "gamma": 0.98, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7fa035cc4950>", "add": "<function ReplayBuffer.add at 0x7fa035cc49e0>", "sample": "<function ReplayBuffer.sample at 0x7fa035cc4a70>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7fa035cc4b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa035cbd2d0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.07, "exploration_fraction": 0.2, "target_update_interval": 37, "_n_calls": 6256, "max_grad_norm": 10, "exploration_rate": 0.07, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7HrhR64UeyFlFKUaDhHP8mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (239 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -166.8, "std_reward": 21.939917957914062, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-20T11:58:58.383681"}
|