--- tags: - merge - mergekit - lazymergekit - hfl/llama-3-chinese-8b-instruct-v2 - NousResearch/Hermes-2-Theta-Llama-3-8B base_model: - hfl/llama-3-chinese-8b-instruct-v2 - NousResearch/Hermes-2-Theta-Llama-3-8B - hfl/llama-3-chinese-8b-instruct-v2 - NousResearch/Hermes-2-Theta-Llama-3-8B - hfl/llama-3-chinese-8b-instruct-v2 --- # Llama3-15B-lingyang-v0.1 Llama3-15B-lingyang-v0.1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [hfl/llama-3-chinese-8b-instruct-v2](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2) * [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B) * [hfl/llama-3-chinese-8b-instruct-v2](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2) * [NousResearch/Hermes-2-Theta-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-8B) * [hfl/llama-3-chinese-8b-instruct-v2](https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v2) ## 🧩 Configuration ```yaml slices: - sources: - model: "hfl/llama-3-chinese-8b-instruct-v2" layer_range: [0, 10] - sources: - model: "NousResearch/Hermes-2-Theta-Llama-3-8B" layer_range: [0, 20] - sources: - model: "hfl/llama-3-chinese-8b-instruct-v2" layer_range: [10, 20] - sources: - model: "NousResearch/Hermes-2-Theta-Llama-3-8B" layer_range: [20, 32] - sources: - model: "hfl/llama-3-chinese-8b-instruct-v2" layer_range: [20, 32] merge_method: passthrough base_model: "NousResearch/Hermes-2-Theta-Llama-3-8B" dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "wwe180/Llama3-15B-lingyang-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```