xXiaobuding commited on
Commit
1505910
1 Parent(s): 0406731

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -0
README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: bert-base-uncased_ai4privacy_en
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # bert-base-uncased_ai4privacy_en
14
+
15
+ This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0702
18
+ - Overall Precision: 0.9259
19
+ - Overall Recall: 0.9464
20
+ - Overall F1: 0.9360
21
+ - Overall Accuracy: 0.9706
22
+ - Accountname F1: 0.9924
23
+ - Accountnumber F1: 0.9905
24
+ - Age F1: 0.9339
25
+ - Amount F1: 0.9278
26
+ - Bic F1: 0.9598
27
+ - Bitcoinaddress F1: 0.9801
28
+ - Buildingnumber F1: 0.9091
29
+ - City F1: 0.9564
30
+ - Companyname F1: 0.9908
31
+ - County F1: 0.9853
32
+ - Creditcardcvv F1: 0.9639
33
+ - Creditcardissuer F1: 0.9868
34
+ - Creditcardnumber F1: 0.8929
35
+ - Currency F1: 0.7726
36
+ - Currencycode F1: 0.8608
37
+ - Currencyname F1: 0.3650
38
+ - Currencysymbol F1: 0.9536
39
+ - Date F1: 0.8590
40
+ - Dob F1: 0.6490
41
+ - Email F1: 0.9945
42
+ - Ethereumaddress F1: 0.9986
43
+ - Eyecolor F1: 0.9688
44
+ - Firstname F1: 0.9790
45
+ - Gender F1: 0.9832
46
+ - Height F1: 0.9906
47
+ - Iban F1: 1.0
48
+ - Ip F1: 0.1025
49
+ - Ipv4 F1: 0.8217
50
+ - Ipv6 F1: 0.7506
51
+ - Jobarea F1: 0.9306
52
+ - Jobtitle F1: 0.9938
53
+ - Jobtype F1: 0.9508
54
+ - Lastname F1: 0.9480
55
+ - Litecoinaddress F1: 0.9345
56
+ - Mac F1: 1.0
57
+ - Maskednumber F1: 0.8609
58
+ - Middlename F1: 0.9601
59
+ - Nearbygpscoordinate F1: 1.0
60
+ - Ordinaldirection F1: 0.9784
61
+ - Password F1: 0.9839
62
+ - Phoneimei F1: 0.9986
63
+ - Phonenumber F1: 0.9903
64
+ - Pin F1: 0.9390
65
+ - Prefix F1: 0.9441
66
+ - Secondaryaddress F1: 0.9945
67
+ - Sex F1: 0.9780
68
+ - Ssn F1: 0.9898
69
+ - State F1: 0.9805
70
+ - Street F1: 0.9693
71
+ - Time F1: 0.9843
72
+ - Url F1: 0.9984
73
+ - Useragent F1: 0.9918
74
+ - Username F1: 0.9909
75
+ - Vehiclevin F1: 0.9856
76
+ - Vehiclevrm F1: 0.9653
77
+ - Zipcode F1: 0.8990
78
+
79
+ ## Model description
80
+
81
+ More information needed
82
+
83
+ ## Intended uses & limitations
84
+
85
+ More information needed
86
+
87
+ ## Training and evaluation data
88
+
89
+ More information needed
90
+
91
+ ## Training procedure
92
+
93
+ ### Training hyperparameters
94
+
95
+ The following hyperparameters were used during training:
96
+ - learning_rate: 5e-05
97
+ - train_batch_size: 8
98
+ - eval_batch_size: 16
99
+ - seed: 42
100
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
101
+ - lr_scheduler_type: cosine_with_restarts
102
+ - lr_scheduler_warmup_ratio: 0.2
103
+ - num_epochs: 2
104
+
105
+ ### Training results
106
+
107
+ | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | Accountname F1 | Accountnumber F1 | Age F1 | Amount F1 | Bic F1 | Bitcoinaddress F1 | Buildingnumber F1 | City F1 | Companyname F1 | County F1 | Creditcardcvv F1 | Creditcardissuer F1 | Creditcardnumber F1 | Currency F1 | Currencycode F1 | Currencyname F1 | Currencysymbol F1 | Date F1 | Dob F1 | Email F1 | Ethereumaddress F1 | Eyecolor F1 | Firstname F1 | Gender F1 | Height F1 | Iban F1 | Ip F1 | Ipv4 F1 | Ipv6 F1 | Jobarea F1 | Jobtitle F1 | Jobtype F1 | Lastname F1 | Litecoinaddress F1 | Mac F1 | Maskednumber F1 | Middlename F1 | Nearbygpscoordinate F1 | Ordinaldirection F1 | Password F1 | Phoneimei F1 | Phonenumber F1 | Pin F1 | Prefix F1 | Secondaryaddress F1 | Sex F1 | Ssn F1 | State F1 | Street F1 | Time F1 | Url F1 | Useragent F1 | Username F1 | Vehiclevin F1 | Vehiclevrm F1 | Zipcode F1 |
108
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|:--------------:|:----------------:|:------:|:---------:|:------:|:-----------------:|:-----------------:|:-------:|:--------------:|:---------:|:----------------:|:-------------------:|:-------------------:|:-----------:|:---------------:|:---------------:|:-----------------:|:-------:|:------:|:--------:|:------------------:|:-----------:|:------------:|:---------:|:---------:|:-------:|:------:|:-------:|:-------:|:----------:|:-----------:|:----------:|:-----------:|:------------------:|:------:|:---------------:|:-------------:|:----------------------:|:-------------------:|:-----------:|:------------:|:--------------:|:------:|:---------:|:-------------------:|:------:|:------:|:--------:|:---------:|:-------:|:------:|:------------:|:-----------:|:-------------:|:-------------:|:----------:|
109
+ | 0.0939 | 1.0 | 4350 | 0.0801 | 0.8951 | 0.9309 | 0.9126 | 0.9666 | 0.9840 | 0.9896 | 0.9182 | 0.8769 | 0.9127 | 0.9627 | 0.8770 | 0.9616 | 0.9847 | 0.9712 | 0.9373 | 0.9813 | 0.8406 | 0.3934 | 0.7451 | 0.1372 | 0.9266 | 0.8354 | 0.5796 | 0.9920 | 0.9877 | 0.9037 | 0.9642 | 0.9789 | 0.9906 | 0.9874 | 0.0 | 0.8416 | 0.8087 | 0.8854 | 0.9825 | 0.9426 | 0.9213 | 0.9015 | 0.9806 | 0.7978 | 0.9543 | 1.0 | 0.9828 | 0.9689 | 0.9917 | 0.9777 | 0.8764 | 0.9340 | 0.9913 | 0.9761 | 0.9949 | 0.9553 | 0.9561 | 0.9723 | 0.9921 | 0.9906 | 0.9779 | 0.9942 | 0.9684 | 0.8522 |
110
+ | 0.0644 | 2.0 | 8700 | 0.0702 | 0.9259 | 0.9464 | 0.9360 | 0.9706 | 0.9924 | 0.9905 | 0.9339 | 0.9278 | 0.9598 | 0.9801 | 0.9091 | 0.9564 | 0.9908 | 0.9853 | 0.9639 | 0.9868 | 0.8929 | 0.7726 | 0.8608 | 0.3650 | 0.9536 | 0.8590 | 0.6490 | 0.9945 | 0.9986 | 0.9688 | 0.9790 | 0.9832 | 0.9906 | 1.0 | 0.1025 | 0.8217 | 0.7506 | 0.9306 | 0.9938 | 0.9508 | 0.9480 | 0.9345 | 1.0 | 0.8609 | 0.9601 | 1.0 | 0.9784 | 0.9839 | 0.9986 | 0.9903 | 0.9390 | 0.9441 | 0.9945 | 0.9780 | 0.9898 | 0.9805 | 0.9693 | 0.9843 | 0.9984 | 0.9918 | 0.9909 | 0.9856 | 0.9653 | 0.8990 |
111
+
112
+
113
+ ### Framework versions
114
+
115
+ - Transformers 4.26.1
116
+ - Pytorch 2.0.0.post101
117
+ - Datasets 2.10.1
118
+ - Tokenizers 0.13.3