--- language: - ru tags: - SER - speech - audio - russian --- # HuBERT fine-tuned on DUSHA dataset for speech emotion recognition in russian language The pre-trained model is this one - [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) The DUSHA dataset used can be found [here](https://github.com/salute-developers/golos/tree/master/dusha#dataset-structure) # Fine-tuning Fine-tuned in Google Colab using Pro account with A100 GPU Freezed all layers exept projector, classifier and all 24 HubertEncoderLayerStableLayerNorm layers Used half of the train dataset # Training parameters - 2 epochs - train batch size = 8 - eval batch size = 8 - gradient accumulation steps = 4 - learning rate = 5e-5 without warm up and decay # Metrics Achieved - accuracy = 0.86 - balanced = 0.76 - macro f1 score = 0.81 on test set, improving accucary and f1 score compared to dataset baseline # Usage ```python from transformers import HubertForSequenceClassification, Wav2Vec2FeatureExtractor import torchaudio import torch feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-large-ls960-ft") model = HubertForSequenceClassification.from_pretrained("xbgoose/hubert-dusha-finetuned") num2emotion = {0: 'neutral', 1: 'angry', 2: 'positive', 3: 'sad', 4: 'other'} filepath = "path/to/audio.wav" waveform, sample_rate = torchaudio.load(filepath, normalize=True) transform = torchaudio.transforms.Resample(sample_rate, 16000) waveform = transform(waveform) inputs = feature_extractor( waveform, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt", padding=True, max_length=16000 * 10, truncation=True ) logits = model(inputs['input_values'][0]).logits predictions = torch.argmax(logits, dim=-1) predicted_emotion = num2emotion[predictions.numpy()[0]] print(predicted_emotion) ```