update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-common_voice_13_0-eo-3
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-common_voice_13_0-eo-3
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2191
|
20 |
+
- Cer: 0.0208
|
21 |
+
- Wer: 0.0686
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-06
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 500
|
49 |
+
- num_epochs: 100
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
|
55 |
+
|:-------------:|:-----:|:-----:|:------:|:---------------:|:------:|
|
56 |
+
| 2.6416 | 2.13 | 1000 | 0.1541 | 0.8599 | 0.6449 |
|
57 |
+
| 0.2633 | 4.27 | 2000 | 0.0335 | 0.1897 | 0.1431 |
|
58 |
+
| 0.1739 | 6.4 | 3000 | 0.0289 | 0.1732 | 0.1145 |
|
59 |
+
| 0.1378 | 8.53 | 4000 | 0.0276 | 0.1729 | 0.1066 |
|
60 |
+
| 0.1172 | 10.67 | 5000 | 0.0268 | 0.1773 | 0.1019 |
|
61 |
+
| 0.1049 | 12.8 | 6000 | 0.0255 | 0.1701 | 0.0937 |
|
62 |
+
| 0.0951 | 14.93 | 7000 | 0.0253 | 0.1718 | 0.0933 |
|
63 |
+
| 0.0851 | 17.07 | 8000 | 0.0239 | 0.1787 | 0.0834 |
|
64 |
+
| 0.0809 | 19.2 | 9000 | 0.0235 | 0.1802 | 0.0835 |
|
65 |
+
| 0.0756 | 21.33 | 10000 | 0.0239 | 0.1784 | 0.0855 |
|
66 |
+
| 0.0708 | 23.47 | 11000 | 0.0235 | 0.1748 | 0.0824 |
|
67 |
+
| 0.0657 | 25.6 | 12000 | 0.0228 | 0.1830 | 0.0796 |
|
68 |
+
| 0.0605 | 27.73 | 13000 | 0.0230 | 0.1896 | 0.0798 |
|
69 |
+
| 0.0583 | 29.87 | 14000 | 0.0224 | 0.1889 | 0.0778 |
|
70 |
+
| 0.0608 | 32.0 | 15000 | 0.0223 | 0.1849 | 0.0757 |
|
71 |
+
| 0.0556 | 34.13 | 16000 | 0.0223 | 0.1872 | 0.0767 |
|
72 |
+
| 0.0534 | 36.27 | 17000 | 0.0221 | 0.1893 | 0.0751 |
|
73 |
+
| 0.0523 | 38.4 | 18000 | 0.0218 | 0.1925 | 0.0729 |
|
74 |
+
| 0.0494 | 40.53 | 19000 | 0.0221 | 0.1957 | 0.0745 |
|
75 |
+
| 0.0475 | 42.67 | 20000 | 0.0217 | 0.1961 | 0.0740 |
|
76 |
+
| 0.048 | 44.8 | 21000 | 0.0214 | 0.1957 | 0.0714 |
|
77 |
+
| 0.0459 | 46.93 | 22000 | 0.0215 | 0.1968 | 0.0717 |
|
78 |
+
| 0.0435 | 49.07 | 23000 | 0.0217 | 0.2008 | 0.0717 |
|
79 |
+
| 0.0428 | 51.2 | 24000 | 0.0212 | 0.1991 | 0.0696 |
|
80 |
+
| 0.0418 | 53.33 | 25000 | 0.0215 | 0.2034 | 0.0714 |
|
81 |
+
| 0.0404 | 55.47 | 26000 | 0.0210 | 0.2014 | 0.0684 |
|
82 |
+
| 0.0394 | 57.6 | 27000 | 0.0210 | 0.2050 | 0.0681 |
|
83 |
+
| 0.0399 | 59.73 | 28000 | 0.0211 | 0.2039 | 0.0700 |
|
84 |
+
| 0.0389 | 61.87 | 29000 | 0.0214 | 0.2091 | 0.0694 |
|
85 |
+
| 0.038 | 64.0 | 30000 | 0.0210 | 0.2100 | 0.0702 |
|
86 |
+
| 0.0361 | 66.13 | 31000 | 0.0215 | 0.2119 | 0.0703 |
|
87 |
+
| 0.0359 | 68.27 | 32000 | 0.0213 | 0.2108 | 0.0714 |
|
88 |
+
| 0.0354 | 70.4 | 33000 | 0.0211 | 0.2120 | 0.0699 |
|
89 |
+
| 0.0364 | 72.53 | 34000 | 0.0211 | 0.2128 | 0.0688 |
|
90 |
+
| 0.0361 | 74.67 | 35000 | 0.0212 | 0.2134 | 0.0694 |
|
91 |
+
| 0.0332 | 76.8 | 36000 | 0.0210 | 0.2176 | 0.0698 |
|
92 |
+
| 0.0341 | 78.93 | 37000 | 0.0208 | 0.2170 | 0.0688 |
|
93 |
+
| 0.032 | 81.07 | 38000 | 0.0209 | 0.2157 | 0.0686 |
|
94 |
+
| 0.0318 | 83.33 | 39000 | 0.0209 | 0.2166 | 0.0685 |
|
95 |
+
| 0.0325 | 85.47 | 40000 | 0.2172 | 0.0209 | 0.0687 |
|
96 |
+
| 0.0316 | 87.6 | 41000 | 0.2181 | 0.0208 | 0.0678 |
|
97 |
+
| 0.0302 | 89.73 | 42000 | 0.2171 | 0.0208 | 0.0679 |
|
98 |
+
| 0.0318 | 91.87 | 43000 | 0.2179 | 0.0211 | 0.0702 |
|
99 |
+
| 0.0314 | 94.0 | 44000 | 0.2186 | 0.0208 | 0.0690 |
|
100 |
+
| 0.0309 | 96.13 | 45000 | 0.2193 | 0.0210 | 0.0696 |
|
101 |
+
| 0.031 | 98.27 | 46000 | 0.2191 | 0.0208 | 0.0686 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.29.1
|
107 |
+
- Pytorch 2.0.1+cu118
|
108 |
+
- Datasets 2.12.0
|
109 |
+
- Tokenizers 0.13.3
|