File size: 2,775 Bytes
e94d61e 6946764 e94d61e 6946764 e94d61e 6946764 e94d61e dbd45f5 e94d61e 6946764 e94d61e 4fcb288 e94d61e 4fcb288 e94d61e dbd45f5 e94d61e 6946764 4fcb288 9aefc3a e94d61e b43bcdc e94d61e c005abf 257c7d5 e94d61e b43bcdc e94d61e 4fcb288 e94d61e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
language:
- eu
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_0
metrics:
- wer
model-index:
- name: Whisper Medium Basque
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_16_0 eu
type: mozilla-foundation/common_voice_16_0
config: eu
split: test
args: eu
metrics:
- name: Wer
type: wer
value: 9.188591686749389
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Basque
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_16_0 eu dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1503
- Wer: 9.1886
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.4647 | 0.06 | 500 | 0.4529 | 34.2140 |
| 0.3163 | 0.12 | 1000 | 0.3516 | 26.0232 |
| 0.3232 | 0.19 | 1500 | 0.2996 | 21.1825 |
| 0.266 | 0.25 | 2000 | 0.2686 | 18.5126 |
| 0.2383 | 0.31 | 2500 | 0.2489 | 16.9412 |
| 0.1916 | 0.38 | 3000 | 0.2233 | 15.2831 |
| 0.2009 | 0.44 | 3500 | 0.2134 | 14.1419 |
| 0.2014 | 0.5 | 4000 | 0.2015 | 13.6579 |
| 0.1964 | 0.56 | 4500 | 0.1853 | 12.0198 |
| 0.1758 | 0.62 | 5000 | 0.1796 | 11.4651 |
| 0.2067 | 0.69 | 5500 | 0.1679 | 10.7989 |
| 0.213 | 0.75 | 6000 | 0.1618 | 10.3139 |
| 0.1272 | 1.03 | 6500 | 0.1551 | 9.8687 |
| 0.0744 | 1.09 | 7000 | 0.1534 | 9.5172 |
| 0.0726 | 1.16 | 7500 | 0.1518 | 9.3240 |
| 0.0627 | 1.22 | 8000 | 0.1503 | 9.1886 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|