Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1346.83 +/- 53.98
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78db0da12ced63824ec9d39ac898ad483dc27fb7abe60f71e21c0f2db7f41837
|
3 |
+
size 129242
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d80c69b5fc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d80c69b6050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d80c69b60e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d80c69b6170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d80c69b6200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d80c69b6290>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d80c69b6320>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d80c69b63b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d80c69b6440>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d80c69b64d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d80c69b6560>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d80c69b65f0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d80c69b9680>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1690511173075149887,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKKUOL9x2i0/iE9mPws+Y79JYy88kAKVv2RA4T5XC5A+V77Vv+AWArsJmse++2mnP9AgAsBdWLA+t6nFvqRnbD8fnLI/+1FiP2ejuj6Kh7U/CATLP5d6hL5U7ae9f3gYP0XNsL9dd6A+TRceP0oiRb/7zQU/TnWSPsPXPj8h+qc9PV4vvufSKMC2wP++UZq+PJkCIr8MtgjAE7KBPgNeBD/y8b+/VofPPi8ywz1kKbi/sPSZPf7PQkDSj16/kaHvvuIDZT9xd9o/C9oMP6byyD9FzbC/XXegPuNFz79KIkW/bdpjvsrLpD7YvkM/WgG8Ps6xK78V3Zg/N1LYvtfWsb9Dv44+EGtDP8IwBj+H9Tq+0IkAwBH6jT5Z8iA/Ow6DPb0HBj+V6xW/obulPezQg74Ga6I/DJGIvgKLfz+2Hq2/YlY5P113oD5NFx4/SiJFv3tjpz6Sp+A+V+JRP1qMlL8uhVg/R/BGQIa4PT6IhLA+ayavvwEE6b4brjA/MouqvuZP2799Oy6/xFYdv0l2gMDHpXE/JZmHP5A+7r7mlJK+XxuHP74gjj/CEHQ/BhzKvmJWOT9dd6A+TRceP0oiRb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABhQce2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjrgkPQAAAAANT+6/AAAAAIG3lTwAAAAA8FDePwAAAACzQAu+AAAAAMiY/T8AAAAAGzu0PQAAAAANB96/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALjxNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFzo/b0AAAAApX7rvwAAAADwQ/M9AAAAAHMC4D8AAAAAXDVuPQAAAABtWvk/AAAAAMF/hLoAAAAABtTcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXJZjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA7JQ2+AAAAAENc3b8AAAAAwNsJvgAAAAAX6ds/AAAAAP+Vsr0AAAAAm3z2PwAAAACbBee9AAAAAB3i6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAChZGO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZV7VvQAAAABDge+/AAAAAO6Ifr0AAAAA5bYAQAAAAAD9ec+9AAAAAAbz3j8AAAAA58auPQAAAABbVN6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIo6SdJ8OTeMAWyUTegDjAF0lEdAqkTTuF6Av3V9lChoBkdAhk50Q04zamgHTegDaAhHQKpF49cry2B1fZQoaAZHQIVYbWmP5pJoB03oA2gIR0CqR+cKw6hhdX2UKGgGR0CAWrdB0IToaAdN6ANoCEdAqkvKPU8V6HV9lChoBkdAgwgsrupjt2gHTegDaAhHQKpS0k6cRUZ1fZQoaAZHQI0PnHvMKTloB03oA2gIR0CqU/w9aEBbdX2UKGgGR0CQduOGCZndaAdN6ANoCEdAqlYJrP+n63V9lChoBkdAiFjEBsANomgHTegDaAhHQKpZ4XQ+lj51fZQoaAZHQIRkYvQF9rpoB03oA2gIR0CqYNs0gr6MdX2UKGgGR0CKgdVlwtJ4aAdN6ANoCEdAqmHxgeA/cHV9lChoBkdAg3zt21UlzGgHTegDaAhHQKpj6YF7laN1fZQoaAZHQICxPpY9xIdoB03oA2gIR0CqaObhNucddX2UKGgGR0CT/ap1zQu3aAdN6ANoCEdAqm/UiW3Sa3V9lChoBkdAldIJqynk1mgHTegDaAhHQKpw7LvkRz11fZQoaAZHQIc+J1s+FDhoB03oA2gIR0CqcuG78Nx3dX2UKGgGR0CIewttALRbaAdN6ANoCEdAqnbEcyWRinV9lChoBkdAkp5hwqAjIWgHTegDaAhHQKp9vWFN+LF1fZQoaAZHQIYd20Re1KJoB03oA2gIR0CqftXPqs2fdX2UKGgGR0CTblYCyQgcaAdN6ANoCEdAqoDL8cdYGXV9lChoBkdAhKVDdpItlWgHTegDaAhHQKqEmVO9FnZ1fZQoaAZHQJL7x47ihnJoB03oA2gIR0Cqi3URvm5ldX2UKGgGR0CSKLoRZlnRaAdN6ANoCEdAqoyAEt/WlXV9lChoBkdAkZ6iGrS3LGgHTegDaAhHQKqOelGgBcR1fZQoaAZHQJBnXI1cdHVoB03oA2gIR0CqknRwIdELdX2UKGgGR0CSOUdpZfUnaAdN6ANoCEdAqplNOEdvKnV9lChoBkdAkL4COWBz3mgHTegDaAhHQKqaXa9sabZ1fZQoaAZHQJOT40IkZ75oB03oA2gIR0CqnFgiu+yrdX2UKGgGR0CTJFkDp1RtaAdN6ANoCEdAqqBObkOqenV9lChoBkdAk8/w8OkLyGgHTegDaAhHQKqoK5QP7N11fZQoaAZHQJCr8x1xKg9oB03oA2gIR0CqqVcmBvrGdX2UKGgGR0CTZ4u/1xsEaAdN6ANoCEdAqqtG+ZgG8nV9lChoBkdAlZFohUzbe2gHTegDaAhHQKqvHiGWUr11fZQoaAZHQJWkDOxB3RpoB03oA2gIR0CqteI8IRh+dX2UKGgGR0CWnGYg7o0RaAdN6ANoCEdAqrcRz3h4uHV9lChoBkdAlhw4od+5OWgHTegDaAhHQKq4/0OmR/51fZQoaAZHQJXP1itq59VoB03oA2gIR0CqvNKwyIpIdX2UKGgGR0CWYsNKh+OPaAdN6ANoCEdAqsOmdkJ8fHV9lChoBkdAlyDmHgxagWgHTegDaAhHQKrEsnWJ79h1fZQoaAZHQJYKDWlMyrRoB03oA2gIR0CqxqUJ4SpSdX2UKGgGR0CRl+f5ULlWaAdN6ANoCEdAqsqbOu7pV3V9lChoBkdAiFDmsFMZg2gHTegDaAhHQKrRcnfEXLx1fZQoaAZHQJcX0sjFAFBoB03oA2gIR0Cq0p4UnG83dX2UKGgGR0CXuOxASnLraAdN6ANoCEdAqtSbz7MxGnV9lChoBkdAmKHLBXS0B2gHTegDaAhHQKrYdOObRWt1fZQoaAZHQJfrdg2Ifr9oB03oA2gIR0Cq34Xw1BMSdX2UKGgGR0CWsxmLLpzLaAdN6ANoCEdAquCijrRjSXV9lChoBkdAls4P0Zm7KGgHTegDaAhHQKrirTpgTh51fZQoaAZHQJbMtbcGkepoB03oA2gIR0Cq54WicoYvdX2UKGgGR0CYCjM5fdAPaAdN6ANoCEdAqu5xmf5DZ3V9lChoBkdAlheAydnTRmgHTegDaAhHQKrvkIWxhUl1fZQoaAZHQJi4tJCjUNNoB03oA2gIR0Cq8Y25paicdX2UKGgGR0CZRV2vStvGaAdN6ANoCEdAqvV8RODaoXV9lChoBkdAmCO4DDCP62gHTegDaAhHQKr8RvnbItF1fZQoaAZHQJdHQGjbi6xoB03oA2gIR0Cq/VlgUlAvdX2UKGgGR0CZmBMqz7djaAdN6ANoCEdAqv9PdXT3I3V9lChoBkdAmOR3GsFMZmgHTegDaAhHQKsDLE7W/ah1fZQoaAZHQJnNiBGx2StoB03oA2gIR0CrCg87p3X7dX2UKGgGR0CZ+3G6wt8NaAdN6ANoCEdAqwsgCIUJwHV9lChoBkdAmnuVQAMlTmgHTegDaAhHQKsNCqgAZKp1fZQoaAZHQJqCzbZezD5oB03oA2gIR0CrEPGr0aqCdX2UKGgGR0CaED7OVxCIaAdN6ANoCEdAqxe36uW8iHV9lChoBkdAloOOCPIXCWgHTegDaAhHQKsYxIbwSap1fZQoaAZHQJkFRtelbeNoB03oA2gIR0CrGvBAGB4EdX2UKGgGR0CYw5fvWpZPaAdN6ANoCEdAqx6vnGKhtnV9lChoBkdAkapha5f+j2gHTegDaAhHQKsmObc45tF1fZQoaAZHQJhOFe3QUpNoB03oA2gIR0CrJ3pHI6sAdX2UKGgGR0CZEAeyzHCGaAdN6ANoCEdAqyln93r2QHV9lChoBkdAmTVDyvs7dWgHTegDaAhHQKstJtbcGkh1fZQoaAZHQJsCYrrgOz9oB03oA2gIR0CrM/x6fJ3gdX2UKGgGR0CZsOiiZfD2aAdN6ANoCEdAqzUG/ag263V9lChoBkdAmeCb/Ot4iWgHTegDaAhHQKs28Z62OQ11fZQoaAZHQJoeXUXpGF1oB03oA2gIR0CrOrbdSEUTdX2UKGgGR0Cd+r2ZiNKiaAdN6ANoCEdAq0FsPJ7swHV9lChoBkdAnQddJSR8t2gHTegDaAhHQKtCk0/GEPF1fZQoaAZHQJ17nZkCmuVoB03oA2gIR0CrRJNKZlWfdX2UKGgGR0Cb+YE7W/ahaAdN6ANoCEdAq0htyLhrFnV9lChoBkdAmumVNxlxwWgHTegDaAhHQKtPYwpvxYt1fZQoaAZHQJqLkREnb7FoB03oA2gIR0CrUHTwMH8kdX2UKGgGR0CZtqQmNR3vaAdN6ANoCEdAq1JoEKVpsXV9lChoBkdAmjBof0VafWgHTegDaAhHQKtWNMeOn2t1fZQoaAZHQJR0KXQdCE9oB03oA2gIR0CrXTHt4RmLdX2UKGgGR0CXApNkvsZ6aAdN6ANoCEdAq149mxt52XV9lChoBkdAmBPkNOM2nGgHTegDaAhHQKtgLd1uBMB1fZQoaAZHQJe1PP6be/JoB03oA2gIR0CrZERJ/XoUdX2UKGgGR0CXINrVOKwZaAdN6ANoCEdAq2vnzcynDXV9lChoBkdAlwoc3ZPEbmgHTegDaAhHQKts+OJ+Dvp1fZQoaAZHQJTBM4LkS29oB03oA2gIR0CrbuzsY2sJdX2UKGgGR0CVDu87IT4+aAdN6ANoCEdAq3Kx0IToMnV9lChoBkdAlAyw71ZkkWgHTegDaAhHQKt5istkFwF1fZQoaAZHQJpXdxaPjn5oB03oA2gIR0Crep0ExIrfdX2UKGgGR0CR8xER8MNMaAdN6ANoCEdAq3yOU0Nz83V9lChoBkdAl07/nfVI7WgHTegDaAhHQKuAgb961LJ1fZQoaAZHQJlrYSK3uu1oB03oA2gIR0Crh2/8l5WzdX2UKGgGR0CY56gK4QSSaAdN6ANoCEdAq4iV74SHunV9lChoBkdAmSat5dGAkWgHTegDaAhHQKuKikxh2GJ1fZQoaAZHQJr3XrOZ9eBoB03oA2gIR0CrjmiJfpljdX2UKGgGR0CacOPEKmbcaAdN6ANoCEdAq5WBxT850nV9lChoBkdAmnZXFcY64mgHTegDaAhHQKuWk/IsAed1fZQoaAZHQJzjEyXUpd9oB03oA2gIR0CrmIrS3LFGdX2UKGgGR0CXev9NN8E3aAdN6ANoCEdAq5xdsi0OVnVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af3a79d1404d317dcb403a9a10884b005701398502674c216b2db38a92aa1226
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:453bf440072dc2b6fafe9e6051e885c145e315f58ebbeeb0c5f5c9199ad993bb
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Fri Jul 21 03:39:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d80c69b5fc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d80c69b6050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d80c69b60e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d80c69b6170>", "_build": "<function ActorCriticPolicy._build at 0x7d80c69b6200>", "forward": "<function ActorCriticPolicy.forward at 0x7d80c69b6290>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d80c69b6320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d80c69b63b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d80c69b6440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d80c69b64d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d80c69b6560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d80c69b65f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d80c69b9680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690511173075149887, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKKUOL9x2i0/iE9mPws+Y79JYy88kAKVv2RA4T5XC5A+V77Vv+AWArsJmse++2mnP9AgAsBdWLA+t6nFvqRnbD8fnLI/+1FiP2ejuj6Kh7U/CATLP5d6hL5U7ae9f3gYP0XNsL9dd6A+TRceP0oiRb/7zQU/TnWSPsPXPj8h+qc9PV4vvufSKMC2wP++UZq+PJkCIr8MtgjAE7KBPgNeBD/y8b+/VofPPi8ywz1kKbi/sPSZPf7PQkDSj16/kaHvvuIDZT9xd9o/C9oMP6byyD9FzbC/XXegPuNFz79KIkW/bdpjvsrLpD7YvkM/WgG8Ps6xK78V3Zg/N1LYvtfWsb9Dv44+EGtDP8IwBj+H9Tq+0IkAwBH6jT5Z8iA/Ow6DPb0HBj+V6xW/obulPezQg74Ga6I/DJGIvgKLfz+2Hq2/YlY5P113oD5NFx4/SiJFv3tjpz6Sp+A+V+JRP1qMlL8uhVg/R/BGQIa4PT6IhLA+ayavvwEE6b4brjA/MouqvuZP2799Oy6/xFYdv0l2gMDHpXE/JZmHP5A+7r7mlJK+XxuHP74gjj/CEHQ/BhzKvmJWOT9dd6A+TRceP0oiRb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABhQce2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjrgkPQAAAAANT+6/AAAAAIG3lTwAAAAA8FDePwAAAACzQAu+AAAAAMiY/T8AAAAAGzu0PQAAAAANB96/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALjxNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFzo/b0AAAAApX7rvwAAAADwQ/M9AAAAAHMC4D8AAAAAXDVuPQAAAABtWvk/AAAAAMF/hLoAAAAABtTcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACXJZjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA7JQ2+AAAAAENc3b8AAAAAwNsJvgAAAAAX6ds/AAAAAP+Vsr0AAAAAm3z2PwAAAACbBee9AAAAAB3i6r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAChZGO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZV7VvQAAAABDge+/AAAAAO6Ifr0AAAAA5bYAQAAAAAD9ec+9AAAAAAbz3j8AAAAA58auPQAAAABbVN6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIo6SdJ8OTeMAWyUTegDjAF0lEdAqkTTuF6Av3V9lChoBkdAhk50Q04zamgHTegDaAhHQKpF49cry2B1fZQoaAZHQIVYbWmP5pJoB03oA2gIR0CqR+cKw6hhdX2UKGgGR0CAWrdB0IToaAdN6ANoCEdAqkvKPU8V6HV9lChoBkdAgwgsrupjt2gHTegDaAhHQKpS0k6cRUZ1fZQoaAZHQI0PnHvMKTloB03oA2gIR0CqU/w9aEBbdX2UKGgGR0CQduOGCZndaAdN6ANoCEdAqlYJrP+n63V9lChoBkdAiFjEBsANomgHTegDaAhHQKpZ4XQ+lj51fZQoaAZHQIRkYvQF9rpoB03oA2gIR0CqYNs0gr6MdX2UKGgGR0CKgdVlwtJ4aAdN6ANoCEdAqmHxgeA/cHV9lChoBkdAg3zt21UlzGgHTegDaAhHQKpj6YF7laN1fZQoaAZHQICxPpY9xIdoB03oA2gIR0CqaObhNucddX2UKGgGR0CT/ap1zQu3aAdN6ANoCEdAqm/UiW3Sa3V9lChoBkdAldIJqynk1mgHTegDaAhHQKpw7LvkRz11fZQoaAZHQIc+J1s+FDhoB03oA2gIR0CqcuG78Nx3dX2UKGgGR0CIewttALRbaAdN6ANoCEdAqnbEcyWRinV9lChoBkdAkp5hwqAjIWgHTegDaAhHQKp9vWFN+LF1fZQoaAZHQIYd20Re1KJoB03oA2gIR0CqftXPqs2fdX2UKGgGR0CTblYCyQgcaAdN6ANoCEdAqoDL8cdYGXV9lChoBkdAhKVDdpItlWgHTegDaAhHQKqEmVO9FnZ1fZQoaAZHQJL7x47ihnJoB03oA2gIR0Cqi3URvm5ldX2UKGgGR0CSKLoRZlnRaAdN6ANoCEdAqoyAEt/WlXV9lChoBkdAkZ6iGrS3LGgHTegDaAhHQKqOelGgBcR1fZQoaAZHQJBnXI1cdHVoB03oA2gIR0CqknRwIdELdX2UKGgGR0CSOUdpZfUnaAdN6ANoCEdAqplNOEdvKnV9lChoBkdAkL4COWBz3mgHTegDaAhHQKqaXa9sabZ1fZQoaAZHQJOT40IkZ75oB03oA2gIR0CqnFgiu+yrdX2UKGgGR0CTJFkDp1RtaAdN6ANoCEdAqqBObkOqenV9lChoBkdAk8/w8OkLyGgHTegDaAhHQKqoK5QP7N11fZQoaAZHQJCr8x1xKg9oB03oA2gIR0CqqVcmBvrGdX2UKGgGR0CTZ4u/1xsEaAdN6ANoCEdAqqtG+ZgG8nV9lChoBkdAlZFohUzbe2gHTegDaAhHQKqvHiGWUr11fZQoaAZHQJWkDOxB3RpoB03oA2gIR0CqteI8IRh+dX2UKGgGR0CWnGYg7o0RaAdN6ANoCEdAqrcRz3h4uHV9lChoBkdAlhw4od+5OWgHTegDaAhHQKq4/0OmR/51fZQoaAZHQJXP1itq59VoB03oA2gIR0CqvNKwyIpIdX2UKGgGR0CWYsNKh+OPaAdN6ANoCEdAqsOmdkJ8fHV9lChoBkdAlyDmHgxagWgHTegDaAhHQKrEsnWJ79h1fZQoaAZHQJYKDWlMyrRoB03oA2gIR0CqxqUJ4SpSdX2UKGgGR0CRl+f5ULlWaAdN6ANoCEdAqsqbOu7pV3V9lChoBkdAiFDmsFMZg2gHTegDaAhHQKrRcnfEXLx1fZQoaAZHQJcX0sjFAFBoB03oA2gIR0Cq0p4UnG83dX2UKGgGR0CXuOxASnLraAdN6ANoCEdAqtSbz7MxGnV9lChoBkdAmKHLBXS0B2gHTegDaAhHQKrYdOObRWt1fZQoaAZHQJfrdg2Ifr9oB03oA2gIR0Cq34Xw1BMSdX2UKGgGR0CWsxmLLpzLaAdN6ANoCEdAquCijrRjSXV9lChoBkdAls4P0Zm7KGgHTegDaAhHQKrirTpgTh51fZQoaAZHQJbMtbcGkepoB03oA2gIR0Cq54WicoYvdX2UKGgGR0CYCjM5fdAPaAdN6ANoCEdAqu5xmf5DZ3V9lChoBkdAlheAydnTRmgHTegDaAhHQKrvkIWxhUl1fZQoaAZHQJi4tJCjUNNoB03oA2gIR0Cq8Y25paicdX2UKGgGR0CZRV2vStvGaAdN6ANoCEdAqvV8RODaoXV9lChoBkdAmCO4DDCP62gHTegDaAhHQKr8RvnbItF1fZQoaAZHQJdHQGjbi6xoB03oA2gIR0Cq/VlgUlAvdX2UKGgGR0CZmBMqz7djaAdN6ANoCEdAqv9PdXT3I3V9lChoBkdAmOR3GsFMZmgHTegDaAhHQKsDLE7W/ah1fZQoaAZHQJnNiBGx2StoB03oA2gIR0CrCg87p3X7dX2UKGgGR0CZ+3G6wt8NaAdN6ANoCEdAqwsgCIUJwHV9lChoBkdAmnuVQAMlTmgHTegDaAhHQKsNCqgAZKp1fZQoaAZHQJqCzbZezD5oB03oA2gIR0CrEPGr0aqCdX2UKGgGR0CaED7OVxCIaAdN6ANoCEdAqxe36uW8iHV9lChoBkdAloOOCPIXCWgHTegDaAhHQKsYxIbwSap1fZQoaAZHQJkFRtelbeNoB03oA2gIR0CrGvBAGB4EdX2UKGgGR0CYw5fvWpZPaAdN6ANoCEdAqx6vnGKhtnV9lChoBkdAkapha5f+j2gHTegDaAhHQKsmObc45tF1fZQoaAZHQJhOFe3QUpNoB03oA2gIR0CrJ3pHI6sAdX2UKGgGR0CZEAeyzHCGaAdN6ANoCEdAqyln93r2QHV9lChoBkdAmTVDyvs7dWgHTegDaAhHQKstJtbcGkh1fZQoaAZHQJsCYrrgOz9oB03oA2gIR0CrM/x6fJ3gdX2UKGgGR0CZsOiiZfD2aAdN6ANoCEdAqzUG/ag263V9lChoBkdAmeCb/Ot4iWgHTegDaAhHQKs28Z62OQ11fZQoaAZHQJoeXUXpGF1oB03oA2gIR0CrOrbdSEUTdX2UKGgGR0Cd+r2ZiNKiaAdN6ANoCEdAq0FsPJ7swHV9lChoBkdAnQddJSR8t2gHTegDaAhHQKtCk0/GEPF1fZQoaAZHQJ17nZkCmuVoB03oA2gIR0CrRJNKZlWfdX2UKGgGR0Cb+YE7W/ahaAdN6ANoCEdAq0htyLhrFnV9lChoBkdAmumVNxlxwWgHTegDaAhHQKtPYwpvxYt1fZQoaAZHQJqLkREnb7FoB03oA2gIR0CrUHTwMH8kdX2UKGgGR0CZtqQmNR3vaAdN6ANoCEdAq1JoEKVpsXV9lChoBkdAmjBof0VafWgHTegDaAhHQKtWNMeOn2t1fZQoaAZHQJR0KXQdCE9oB03oA2gIR0CrXTHt4RmLdX2UKGgGR0CXApNkvsZ6aAdN6ANoCEdAq149mxt52XV9lChoBkdAmBPkNOM2nGgHTegDaAhHQKtgLd1uBMB1fZQoaAZHQJe1PP6be/JoB03oA2gIR0CrZERJ/XoUdX2UKGgGR0CXINrVOKwZaAdN6ANoCEdAq2vnzcynDXV9lChoBkdAlwoc3ZPEbmgHTegDaAhHQKts+OJ+Dvp1fZQoaAZHQJTBM4LkS29oB03oA2gIR0CrbuzsY2sJdX2UKGgGR0CVDu87IT4+aAdN6ANoCEdAq3Kx0IToMnV9lChoBkdAlAyw71ZkkWgHTegDaAhHQKt5istkFwF1fZQoaAZHQJpXdxaPjn5oB03oA2gIR0Crep0ExIrfdX2UKGgGR0CR8xER8MNMaAdN6ANoCEdAq3yOU0Nz83V9lChoBkdAl07/nfVI7WgHTegDaAhHQKuAgb961LJ1fZQoaAZHQJlrYSK3uu1oB03oA2gIR0Crh2/8l5WzdX2UKGgGR0CY56gK4QSSaAdN6ANoCEdAq4iV74SHunV9lChoBkdAmSat5dGAkWgHTegDaAhHQKuKikxh2GJ1fZQoaAZHQJr3XrOZ9eBoB03oA2gIR0CrjmiJfpljdX2UKGgGR0CacOPEKmbcaAdN6ANoCEdAq5WBxT850nV9lChoBkdAmnZXFcY64mgHTegDaAhHQKuWk/IsAed1fZQoaAZHQJzjEyXUpd9oB03oA2gIR0CrmIrS3LFGdX2UKGgGR0CXev9NN8E3aAdN6ANoCEdAq5xdsi0OVnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Fri Jul 21 03:39:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc9b89492d8ac3fd57d58b9454e1497e0b40198bfacd8ce6120b1963a15845d8
|
3 |
+
size 1154984
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1346.8295295399178, "std_reward": 53.981965249816525, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-28T04:29:38.966784"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d55c0cedffdc78d019e4ea3d71e9a07faa30c55bfa9db54d97ab187ef55d44d5
|
3 |
+
size 2176
|