|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- PygmalionAI/PIPPA |
|
- Norquinal/claude_multiround_chat_30k |
|
- ehartford/dolphin |
|
- cais/mmlu |
|
- OpenLeecher/Teatime |
|
- BAAI/COIG-PC |
|
- natural_questions |
|
--- |
|
|
|
# RWKV 14B one state model |
|
finetuend on instruction datasets ,can do Role play, for openllm leaderboard, impoved mmlu training datasets |
|
|
|
this is a huggingface formatted model |
|
|
|
checkpoint can be founded here https://huggingface.co/xiaol/Model_zoo/blob/main/rwkv-raven-14B-v4-one-state.pth |
|
and need to use new vocabs file https://huggingface.co/xiaol/Model_zoo/blob/main/20B_tokenizer_new_inference.json |
|
|
|
``` |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
#model_id = "xiaol/Huggingface-RWKV-claude-for-mobile-v4-world-1.5B-16k" |
|
model_id = "xiaol/RWKV-raven-14B-one-state" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16) |
|
|
|
#model = model.half() #1.5B need fp32 |
|
|
|
#model = torch.compile(model) #need pytorch 2.0 and linux |
|
model.to(0) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
question = "Tell me about ravens" |
|
prompt = f"### Instruction: {question}\n### Response:" |
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(0) |
|
output = model.generate(inputs["input_ids"], max_new_tokens=100) |
|
|
|
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True)) |
|
``` |
|
|
|
### Traning details |
|
https://wandb.ai/one-/out14B-one/runs/uhomhbgg/workspace |
|
|
|
### Test case |
|
https://rwkv.ai-creator.net/st |
|
|
|
https://rwkv-next-web.ai-creator.net/ |