--- license: apache-2.0 datasets: - PygmalionAI/PIPPA - Norquinal/claude_multiround_chat_30k - ehartford/dolphin - cais/mmlu - OpenLeecher/Teatime - BAAI/COIG-PC - natural_questions --- # RWKV 14B one state model finetuend on instruction datasets ,can do Role play, for openllm leaderboard, impoved mmlu training datasets this is a huggingface formatted model checkpoint can be founded here https://huggingface.co/xiaol/Model_zoo/blob/main/rwkv-raven-14B-v4-one-state.pth and need to use new vocabs file https://huggingface.co/xiaol/Model_zoo/blob/main/20B_tokenizer_new_inference.json ``` from transformers import AutoTokenizer, AutoModelForCausalLM import torch #model_id = "xiaol/Huggingface-RWKV-claude-for-mobile-v4-world-1.5B-16k" model_id = "xiaol/RWKV-raven-14B-one-state" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16) #model = model.half() #1.5B need fp32 #model = torch.compile(model) #need pytorch 2.0 and linux model.to(0) tokenizer = AutoTokenizer.from_pretrained(model_id) question = "Tell me about ravens" prompt = f"### Instruction: {question}\n### Response:" inputs = tokenizer(prompt, return_tensors="pt").to(0) output = model.generate(inputs["input_ids"], max_new_tokens=100) print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True)) ``` ### Traning details https://wandb.ai/one-/out14B-one/runs/uhomhbgg/workspace ### Test case https://rwkv.ai-creator.net/st https://rwkv-next-web.ai-creator.net/