File size: 14,364 Bytes
2c0a335 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
# Copyright (c) OpenMMLab. All rights reserved.
import json
import numpy as np
import torch
# triton_python_backend_utils is available in every Triton Python model. You
# need to use this module to create inference requests and responses. It also
# contains some utility functions for extracting information from model_config
# and converting Triton input/output types to numpy types.
import triton_python_backend_utils as pb_utils
from diffusers import (StableDiffusionXLPipeline,
AutoencoderKL,
ControlNetModel,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLControlNetPipeline,
StableDiffusionXLControlNetImg2ImgPipeline,
StableDiffusionPipeline)
from diffusers.utils import load_image
from PIL import Image
def prepare_tpose_image(img):
tpose_img_ratio = {}
padding_color = (0, 0, 0)
# img0
padded_image = Image.new(img.mode, (1024, 768), padding_color)
img768 = img.resize((768,768))
padded_image.paste(img768, ((1024 - 768) // 2, 0))
tpose_img_ratio[0] = padded_image
# img1
img800 = img.resize((800, 800))
tpose_img_ratio[1] = img800
# img2
padded_image = Image.new(img.mode, (600, 800), padding_color)
img600 = img.resize((600, 600))
padded_image.paste(img600, (0, (800 - 600) // 2))
tpose_img_ratio[2] = padded_image
# img3
padded_image = Image.new(img.mode, (1024, 576), padding_color)
img576 = img.resize((576, 576))
padded_image.paste(img576, ((1024 - 576) // 2, 0))
tpose_img_ratio[3] = padded_image
# img4
padded_image = Image.new(img.mode, (448, 800), padding_color)
img448 = img.resize((448, 448))
padded_image.paste(img448, (0, (800 - 448) // 2))
tpose_img_ratio[4] = padded_image
# img5
padded_image = Image.new(img.mode, (1024, 680), padding_color)
img576 = img.resize((680, 680))
padded_image.paste(img576, ((1024 - 680) // 2, 0))
tpose_img_ratio[5] = padded_image
# img6
padded_image = Image.new(img.mode, (528, 800), padding_color)
img448 = img.resize((528, 528))
padded_image.paste(img448, (0, (800 - 528) // 2))
tpose_img_ratio[6] = padded_image
return tpose_img_ratio
class TritonPythonModel:
"""Your Python model must use the same class name.
Every Python model that is created must have "TritonPythonModel" as the
class name.
"""
def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to initialize any state associated with this model.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance
device ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
print(args)
# You must parse model_config. JSON string is not parsed here
self.model_config = json.loads(args['model_config'])
weight_dtype = torch.float16
# pose control
self.controlnet = ControlNetModel.from_pretrained("/nvme/shared/huggingface_hub/models/controlnet-openpose-sdxl-1.0", torch_dtype=weight_dtype)
self.controlnet = self.controlnet.to(f"cuda:{args['model_instance_device_id']}")
self.tpose_image = load_image('/nvme/liuwenran/repos/magicmaker2-image-generation/data/t-pose.jpg')
# anime style
anime_ckpt_dir = '/nvme/shared/civitai_models/ckpts/models--gsdf--CounterfeitXL/snapshots/4708675873bd09833aabc3fd4cb2de5fcd1726ac'
self.pipeline_anime = StableDiffusionXLPipeline.from_pretrained(
anime_ckpt_dir, torch_dtype=weight_dtype
)
self.pipeline_anime = self.pipeline_anime.to(f"cuda:{args['model_instance_device_id']}")
# realistic style
realistic_ckpt_dir = '/nvme/shared/civitai_models/ckpt_save_pretrained/copaxTimelessxlSDXL1_v8'
self.pipeline_realistic = StableDiffusionXLPipeline.from_pretrained(
realistic_ckpt_dir, torch_dtype=weight_dtype
)
self.pipeline_realistic = self.pipeline_realistic.to(f"cuda:{args['model_instance_device_id']}")
# dim3 for oil painting style and sketch
dim3_ckpt_dir = '/nvme/shared/civitai_models/ckpt_save_pretrained/protovisionXLHighFidelity3D_release0630Bakedvae'
self.pipeline_oil_painting = StableDiffusionXLPipeline.from_pretrained(
dim3_ckpt_dir, torch_dtype=weight_dtype
)
oil_painting_lora_dir = '/nvme/shared/civitai_models/loras/ClassipeintXL1.9.safetensors'
self.pipeline_oil_painting.load_lora_weights(oil_painting_lora_dir)
self.pipeline_oil_painting = self.pipeline_oil_painting.to(f"cuda:{args['model_instance_device_id']}")
# sd xl base
# pretrained_model_name_or_path = "stabilityai/stable-diffusion-xl-base-1.0"
pretrained_model_name_or_path = '/nvme/shared/huggingface_hub/huggingface/hub/models--stabilityai--stable-diffusion-xl-base-1.0/snapshots/76d28af79639c28a79fa5c6c6468febd3490a37e'
# vae_path = "madebyollin/sdxl-vae-fp16-fix"
vae_path = '/nvme/shared/huggingface_hub/huggingface/hub/models--madebyollin--sdxl-vae-fp16-fix/snapshots/4df413ca49271c25289a6482ab97a433f8117d15'
vae = AutoencoderKL.from_pretrained(
vae_path,
torch_dtype=weight_dtype,
)
# guofeng style
guofeng_lora_dir = '/nvme/shared/civitai_models/loras/minimalism.safetensors'
self.pipeline_guofeng = StableDiffusionXLPipeline.from_pretrained(
pretrained_model_name_or_path, vae=vae, torch_dtype=weight_dtype
)
self.pipeline_guofeng.load_lora_weights(guofeng_lora_dir)
self.pipeline_guofeng = self.pipeline_guofeng.to(f"cuda:{args['model_instance_device_id']}")
# manghe style
manghe_lora_dir = '/nvme/shared/civitai_models/loras/mengwa.safetensors'
self.pipeline_manghe = StableDiffusionXLPipeline.from_pretrained(
pretrained_model_name_or_path, vae=vae, torch_dtype=weight_dtype
)
self.pipeline_manghe.load_lora_weights(manghe_lora_dir)
self.pipeline_manghe = self.pipeline_manghe.to(f"cuda:{args['model_instance_device_id']}")
self.ratio_dict = {
0: (1024, 768),
1: (800, 800),
2: (600, 800),
3: (1024, 576),
4: (448, 800),
5: (1024, 680),
6: (528, 800)
}
self.tpose_image_ratio = prepare_tpose_image(self.tpose_image)
sd15_dir = '/nvme/shared/stable-diffusion-v1-5'
self.sd15 = StableDiffusionPipeline.from_pretrained(sd15_dir)
self.sd15 = self.sd15.to(f"cuda:{args['model_instance_device_id']}")
def execute(self, requests):
"""`execute` must be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference is requested
for this model. Depending on the batching configuration (e.g. Dynamic
Batching) used, `requests` may contain multiple requests. Every
Python model, must create one pb_utils.InferenceResponse for every
pb_utils.InferenceRequest in `requests`. If there is an error, you can
set the error argument when creating a pb_utils.InferenceResponse.
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""
responses = []
# Every Python backend must iterate over everyone of the requests
# and create a pb_utils.InferenceResponse for each of them.
for request in requests:
# Get INPUT
prompt = pb_utils.get_input_tensor_by_name(request, 'PROMPT').as_numpy()
prompt = prompt.item().decode('utf-8')
style = pb_utils.get_input_tensor_by_name(request,'STYLE').as_numpy()
style = style.item().decode('utf-8')
ref_img = pb_utils.get_input_tensor_by_name(request,'REFIMAGE').as_numpy()
tpose = pb_utils.get_input_tensor_by_name(request,'TPOSE').as_numpy()
ratio = pb_utils.get_input_tensor_by_name(request,'RATIO').as_numpy()
print(f"prompt:{prompt} style:{style} ref_img:{ref_img.shape} tpose:{tpose} ratio:{ratio}")
tpose = tpose[0]
pipeline_infer = self.pipeline_anime
# load lora
if style == 'manghe':
pipeline_infer = self.pipeline_manghe
prompt = 'chibi,' + prompt
elif style == 'guofeng':
pipeline_infer = self.pipeline_guofeng
prompt = 'minimalist style, Flat illustration, Chinese style,' + prompt
elif style == 'xieshi':
pipeline_infer = self.pipeline_realistic
elif style == 'youhua':
pipeline_infer = self.pipeline_oil_painting
prompt = 'oil painting,' + prompt
elif style == 'chahua':
pipeline_infer = self.pipeline_realistic
prompt = 'sketch, sketch painting,' + prompt
prompt_to_append = ', best quality, extremely detailed, perfect, 8k, masterpeice'
prompt = prompt + prompt_to_append
negative_prompt = 'nude'
# use img2img pipeline to infer ref img
if ref_img.shape != (1,1,3):
if tpose:
pipeline_infer = StableDiffusionXLControlNetImg2ImgPipeline(pipeline_infer.vae, pipeline_infer.text_encoder, pipeline_infer.text_encoder_2,
pipeline_infer.tokenizer, pipeline_infer.tokenizer_2, pipeline_infer.unet, self.controlnet, pipeline_infer.scheduler)
else:
pipeline_infer = StableDiffusionXLImg2ImgPipeline(pipeline_infer.vae, pipeline_infer.text_encoder, pipeline_infer.text_encoder_2,
pipeline_infer.tokenizer, pipeline_infer.tokenizer_2, pipeline_infer.unet, pipeline_infer.scheduler)
else:
if tpose:
pipeline_infer = StableDiffusionXLControlNetPipeline(pipeline_infer.vae, pipeline_infer.text_encoder, pipeline_infer.text_encoder_2,
pipeline_infer.tokenizer, pipeline_infer.tokenizer_2, pipeline_infer.unet, self.controlnet, pipeline_infer.scheduler)
else:
pipeline_infer = StableDiffusionXLPipeline(pipeline_infer.vae, pipeline_infer.text_encoder, pipeline_infer.text_encoder_2,
pipeline_infer.tokenizer, pipeline_infer.tokenizer_2, pipeline_infer.unet, pipeline_infer.scheduler)
ratio_type = ratio[0]
width, height = self.ratio_dict[ratio_type]
controlnet_conditioning_scale = 1.0
if ref_img.shape != (1, 1, 3):
init_image = Image.fromarray(ref_img)
if tpose:
image = pipeline_infer(prompt, negative_prompt=negative_prompt, controlnet_conditioning_scale=controlnet_conditioning_scale,
image=init_image.resize((width, height)),
control_image=self.tpose_image_ratio[ratio_type], strength=0.5).images[0]
else:
image = pipeline_infer(prompt, negative_prompt=negative_prompt, image=init_image, width=width, height=height, strength=0.5).images[0]
else:
if tpose:
image = pipeline_infer(prompt, negative_prompt=negative_prompt, controlnet_conditioning_scale=controlnet_conditioning_scale,
image=self.tpose_image_ratio[ratio_type]).images[0]
else:
image = pipeline_infer(prompt, negative_prompt=negative_prompt, num_inference_steps=25, width=width, height=height).images[0]
image_np = np.array(image).astype(np.float32) / 255.0
image_pt = torch.from_numpy(image_np.transpose(2, 0, 1)).unsqueeze(0)
image_pt = image_pt.to('cuda')
check_res, nsfw = self.sd15.run_safety_checker(image_pt, 'cuda', torch.float32)
if nsfw[0]:
image = Image.new("RGB", image.size, (0, 0, 0))
image = np.array(image).astype(np.uint8)
print(f"final result: {image.shape}, [{np.min(image)}-{np.max(image)}]")
# Create output tensors. You need pb_utils.Tensor
# objects to create pb_utils.InferenceResponse.
out_tensor = pb_utils.Tensor('OUTPUT', image)
# Create InferenceResponse. You can set an error here in case
# there was a problem with handling this inference request.
# Below is an example of how you can set errors in inference
# response:
#
# pb_utils.InferenceResponse(
# output_tensors=..., TritonError("An error occurred"))
inference_response = pb_utils.InferenceResponse(
output_tensors=[out_tensor])
responses.append(inference_response)
# You should return a list of pb_utils.InferenceResponse. Length
# of this list must match the length of `requests` list.
return responses
def finalize(self):
"""`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is optional. This function allows the
model to perform any necessary clean ups before exit.
"""
print('Cleaning up...')
|