--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-base_trained results: [] --- # whisper-base_trained This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5384 - Wer: 150.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-----:| | 2.5874 | 4.0 | 6 | 2.2372 | 150.0 | | 1.1083 | 8.0 | 12 | 1.4557 | 150.0 | | 0.6359 | 12.0 | 18 | 1.0874 | 150.0 | | 0.2396 | 16.0 | 24 | 0.8668 | 200.0 | | 0.056 | 20.0 | 30 | 0.7220 | 150.0 | | 0.0147 | 24.0 | 36 | 0.6112 | 200.0 | | 0.0055 | 28.0 | 42 | 0.5606 | 200.0 | | 0.0037 | 32.0 | 48 | 0.5384 | 150.0 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1