File size: 2,034 Bytes
2656d30
301aaca
 
 
8cf27d1
301aaca
 
 
 
 
 
 
 
 
8cf27d1
301aaca
 
 
 
 
 
 
8cf27d1
301aaca
8cf27d1
2656d30
 
301aaca
 
2656d30
301aaca
2656d30
301aaca
 
 
 
2656d30
301aaca
2656d30
301aaca
2656d30
301aaca
2656d30
301aaca
2656d30
301aaca
2656d30
301aaca
2656d30
301aaca
2656d30
301aaca
2656d30
301aaca
 
 
 
 
 
 
 
 
 
 
 
2656d30
301aaca
2656d30
301aaca
 
 
 
 
 
2656d30
 
301aaca
2656d30
301aaca
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: mit
tags:
- generated_from_trainer
base_model: facebook/w2v-bert-2.0
datasets:
- common_voice_16_0
metrics:
- wer
model-index:
- name: w2v-bert-2.0-mongolian-colab-CV16.0
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: common_voice_16_0
      type: common_voice_16_0
      config: mn
      split: test
      args: mn
    metrics:
    - type: wer
      value: 0.32733304328910157
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-mongolian-colab-CV16.0

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5090
- Wer: 0.3273

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.8026        | 2.3715 | 300  | 0.6395          | 0.5274 |
| 0.3561        | 4.7431 | 600  | 0.5804          | 0.4247 |
| 0.1776        | 7.1146 | 900  | 0.5514          | 0.3697 |
| 0.0764        | 9.4862 | 1200 | 0.5090          | 0.3273 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1