--- license: mit tags: - generated_from_trainer base_model: facebook/w2v-bert-2.0 datasets: - common_voice_16_0 metrics: - wer model-index: - name: w2v-bert-2.0-mongolian-colab-CV16.0 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: mn split: test args: mn metrics: - type: wer value: 0.32733304328910157 name: Wer --- # w2v-bert-2.0-mongolian-colab-CV16.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5090 - Wer: 0.3273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.8026 | 2.3715 | 300 | 0.6395 | 0.5274 | | 0.3561 | 4.7431 | 600 | 0.5804 | 0.4247 | | 0.1776 | 7.1146 | 900 | 0.5514 | 0.3697 | | 0.0764 | 9.4862 | 1200 | 0.5090 | 0.3273 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1